Microstructure and Properties of 8YSZ with High Component BAS

2014 ◽  
Vol 541-542 ◽  
pp. 25-29
Author(s):  
Jin Qin ◽  
Gang Chen ◽  
Zhi Ming Du ◽  
Jia Hong Niu

The sintering temperature of 8YSZ (8mol% yttrium stabilized zirconia) is very high, usually above 1500°C. BAS (BaO-Al2O3-SiO2) microcrystalline glass can be used as sintering aids to reduce the sintering temperature of 8YSZ. In this research, large proportion (30-50wt%) BAS was added in 8YSZ to observe the influence of the sintering aids. The change rules of mechanical properties such as density test, bending strength and toughness in different material component and sintering process were researched. The results show that physical and mechanical performance improvement with the increase of sintering temperature and sintering time, density and bending strength decreases with the increase of BAS mass fraction. The optimal mechanical properties are obtained by sintering temperature 1300°C, sintering time 0.5h and 30wt% BAS.

2015 ◽  
Vol 815 ◽  
pp. 297-300 ◽  
Author(s):  
Xing Ping Fan ◽  
Ben Ju Wang ◽  
Xiao Qing Ren ◽  
Fu Chang Peng

The medical Ti-20Mo alloys were fabricated by powder metallurgy. The effects of sintering temperature on the phase, the morphology and the mechanical properties of Ti-Mo alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties test methods. The results showed that after sintering at 1200 °C, the microstructure of Ti-Mo alloys mainly consisted of α phase. The increasing sintering time could promote α→β phase transition, thus the flexural strength and the elastic modulus of Ti-Mo alloys could be controlled. When the sintering temperature was 1300 °C, molybdenum content was 20%, the bending strength and the compressive strength of Ti-20Mo alloy were 1369MPa and 2602MPa respectively, and the elastic modulus was 3.4GPa. It may be concluded that the Ti-20Mo alloys is prospective prostheses materials.


2015 ◽  
Vol 655 ◽  
pp. 53-57
Author(s):  
Xian Li Wang ◽  
Hong Yu Gong ◽  
Yu Jun Zhang ◽  
Song Wei Che

BNw/Si3N4composites were fabricated by gas pressure sintering process using α-Si3N4powder and self-made BN whisker as principal raw materials. The effects of different sintering additives such as YAG, MgO+YAG and RE2O3+YAG(RE=La, Sm, Dy) on the apparent porosity, microstructure, phase composition, mechanical performance and dielectric properties of the composites were analysed. The results revealed that composite sintering aids at certain ratio (MgO/RE2O3:YAG=1:5) was more conducive to ceramic densification than single YAG additive. The BNw/Si3N4sintered with La2O3+YAG acquired the highest density and the maximum bending strength (272.46 MPa) and fracture toughness(4.9 MPa·m1/2). It was speculated that ceramic densification process was related to formation of different eutectic liquid phases with different viscosity. Additionally, when the apparent porosity of BNw/Si3N4composites was 20% or less, dielectric properties of the material were mainly influenced by the porosity and the value of the permittivity and dielectric loss decreased with the increase of ceramic porosity.


2015 ◽  
Vol 1104 ◽  
pp. 9-14
Author(s):  
Xiao Ju Gao ◽  
Dong Ming Yan ◽  
Jian Wu Cao ◽  
Cong Zhang ◽  
Xiao Ming Mu ◽  
...  

Hexagonal boron nitride ceramic(h-BN)has been prepared by pressureless sintering method. The effect of sintering aids, moulding pressure and sintering temperature on the mechanical properties and microstructures of h-BN were investigated. The results show that the densification of as-prepared h-BN ceramic can be contributed to the addition of sintering-aids and the formation of card-house structure. Because of the high densification and card-house microstructure, the obtained h-BN demonstrates higher bending strength and lower porosity when the moulding pressure is 200MPa, sintering temperature is 1850°C and the contents of sintering aids is 10wt%.


2013 ◽  
Vol 834-836 ◽  
pp. 315-319
Author(s):  
Zhi Ming Du ◽  
Jin Qin ◽  
Yong Gen Sun ◽  
Jia Hong Niu ◽  
Wang Qi Zhao

The 8YSZ ceramic coating material was prepared by hot-pressing sintering, and the mechanical connection between 8YSZ ceramic coating materials and 7075 aluminum alloy through the mosaic structure was presented as a new connection method. The change rules of mechanical properties such as density test, bending strength and toughness in different sintering process were researched. The results show that density is increased and grains are grown up gradually with the increasing sintering temperature without any microstructure defects. The optimal mechanical properties are obtained by sintering temperature at 1500°C.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 438
Author(s):  
Shuwei Yang ◽  
Bingliang Liang ◽  
Changhong Liu ◽  
Jin Liu ◽  
Caisheng Fang ◽  
...  

The (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 [(1–x)CLT-xNMT, x = 0.35~0.60] ceramics were prepared via microwave sintering. The effects of sintering temperature and composition on the phase formation, microstructure, and microwave dielectric properties were investigated. The results show that the microwave sintering process requires a lower sintering temperature and shorter sintering time of (1–x)CLT-xNMT ceramics than conventional heating methods. All of the (1–x)CLT-xNMT ceramics possess a single perovskite structure. With the increase of x, the dielectric constant (ε) shows a downward trend; the quality factor (Qf) drops first and then rises significantly; the resonance frequency temperature coefficient (τf) keeps decreasing. With excellent microwave dielectric properties (ε = 51.3, Qf = 13,852 GHz, τf = −1.9 × 10−6/°C), the 0.65CLT-0.35NMT ceramic can be applied to the field of mobile communications.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2018 ◽  
Vol 30 (3) ◽  
pp. 194
Author(s):  
Joseph Gunawan ◽  
Dede Taufik ◽  
Veni Takarini ◽  
Zulia Hasratiningsih

Introduction: Porcelain must have sufficient flexural strength to withstand mastication forces. The flexural strength of porcelain can be influenced by the maturity level of porcelain related to the temperature and sintering time. The purpose of this study was to compare the flexural strength of Indonesian natural sand self-synthesised porcelain with different sintering temperatures. Methods: Self-synthesised porcelain powder, with the composition of 65% Pangaribuan felspar, 25% Belitung silica, 5% Sukabumi kaolin, and 5% potassium salt, were condensed into 10 samples with the size of 7cm x 2cm x 0.4cm. A total of 5 samples were each burned at the temperature of 1150°C and 1200°C. Flexural strength test was performed using the Universal Testing Machine (Netzsch™) with the lowest load of 7.5 kg, and the data obtained was calculated using the bending strength formula. Result: The average flexural strength of self-synthesised porcelain at the sintering temperature of 1150°C was 26.678 MPa, while at the temperature of 1200°C was 39.038 MPa. Conclusion: This study concluded that Indonesian natural sand self-synthesised porcelain had a lower flexural strength at the sintering temperature of 1150°C than at the temperature of 1200°C.Keywords: Flexural strength, self-synthesised porcelain, sintering temperature.


2015 ◽  
Vol 1125 ◽  
pp. 401-405
Author(s):  
Mohamed M. Aboras ◽  
Andanastuti Muchtar ◽  
Noor Faeizah Amat ◽  
Che Husna Azhari ◽  
Norziha Yahaya

The demand for tetragonal zirconia as a dental restorative material has been increasing because of its excellent mechanical properties and resemblance to natural tooth color, as well as its excellent biological compatibility. Cerium oxide (CeO2) has been added to yttria-stabilized zirconia (Y-TZP), and studies have demonstrated that the stability of the tetragonal phase can be significantly improved. Y-TZP with 5wt% CeO2 as a second stabilizer was developed via colloidal process, followed by a suitable sintering process. According to the literature, the sintering process is the most crucial stage in ceramic processing to obtain the most homogeneous structure with high density and hardness. This study aims to investigate the effect of sintering temperature on the mechanical properties of nanostructured ceria–zirconia fabricated via colloidal processing and slip casting process with cold isostatic pressing (CIP). Twenty-five pellet specimens were prepared from ceria–zirconia with 20 nm particle size. CeO2 nanopowder was mixed with Y-TZP nanopowder via colloidal processing. The consolidation of the powder was done via slip casting followed by CIP. The samples were divided into five different sintering temperatures with. Results from FESEM, density and hardness analyses demonstrated statistically significant increase in density and hardness as the sintering temperature increased. The hardness increased from 4.65 GPa to 14.14 GPa, and the density increased from 4.70 to 5.97 (g/cm3) as the sintering temperature increased without changing the holding time. Sintering Ce-Y-TZP at 1600 °C produced samples with homogenous structures, high hardness (14.14 GPa), and full densification with 98% of the theoretical density.


2012 ◽  
Vol 512-515 ◽  
pp. 377-381 ◽  
Author(s):  
Jin Rong Lu ◽  
Yang Zhou ◽  
Yong Zheng ◽  
Shi Bo Li ◽  
Zhen Ying Huang ◽  
...  

In this paper, a new type of Ti3SiC2/Cu composites with the volume fractions of 30% Ti3SiC2 particle was prepared by hot pressing and vacuum sintering respectively. The effects of sintering temperature and holding time on the density, resistance and Vickers hardness of Cu-30vol%Ti3SiC2 composite were investigated. The results show that the mechanical properties of the composites prepared by hot pressing are better than that prepared by vacuum sintering. The relative densities of Cu-30vol% Ti3SiC2 composites are rather high in suitable sintering conditions. It achieved 100% for the composites prepared by hot pressing at 930°C for 2h, and 98.4% for the composites prepared by vacuum sintering at 1250°C for 1h. At the same time, the maximum Vickers hardness reached 1735MPa at 900°C by hot pressing. The resistance and Vickers hardness of the composites decreased with an increase in sintering temperature, whereas the density increased. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) were used to observe the microstructure of the composites. The relationship between microstructure and mechanical properties was discussed.


Sign in / Sign up

Export Citation Format

Share Document