Thermoelectric Properties of Directionally Solidified Bi2Te3 Alloys under High Thermal Gradient

2011 ◽  
Vol 197-198 ◽  
pp. 1109-1112 ◽  
Author(s):  
Song Ke Feng ◽  
Shuang Ming Li ◽  
Qing Yan Luo ◽  
Heng Zhi Fu

Thermoelectric Bi2Te3bulk alloys were directionally solidified successfully at the pulling rate ranging from 1 μm/s to 50 μm/s under a high temperature gradient of 200 K/cm. Preferred crystal orientations of (0 1 5), (1 0 10) and (1 1 0) faces appeared at the pulling rate of 50 μm/s. In the Bi2Te3alloys directionally solidified at 5 μm/s, the maximum Seebeck coefficient of -253 μV/K was obtained and the maximum electrical resistivity of 2.26 mΩ•cm was measured at 300 K. Besides, the optimum Power Factor (PF) value reached 3.83×10-3W/K2m at 1 μm/s and the measured results show that the thermoelectric Bi2Te3 bulk alloys grown at low growth rates supply the large PF value at ambient temperate, while at high temperature, the alloy grown at 50 μm/s has a better PF value.

2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


1998 ◽  
Vol 35 (8) ◽  
pp. 905-922 ◽  
Author(s):  
Haiming Yang ◽  
Kurt Kyser ◽  
Kevin Ansdell

Metamorphic assemblages differ between the metasedimentary MacLean Lake belt and the adjacent Central Metavolcanic belt in the La Ronge domain, Trans-Hudson Orogen. The former consists of meta-arkoses, psammitic gneisses, metaconglomerates, and calc-silicate gneisses of upper amphibolite facies (600-740°C, 440-660 MPa) with local migmatization, whereas the latter is comprised mainly of metavolcanic and plutonic rocks, with minor metasedimentary schists of greenschist to lower amphibolite facies (480-630°C, 520-560 MPa). Petrographic evidence indicates that peak metamorphic conditions were reached towards the end of D1 deformation during which the Central Metavolcanic belt was thrust onto the MacLean Lake belt along the McLennan Lake tectonic zone, which separates the two belts. Peak metamorphic assemblages did not undergo retrograde alteration during D2 deformation, indicating that high temperature was maintained during D2 deformation. Differences in pressure (P) and temperature (T) between the northeastern and southwestern parts of the Central Metavolcanic belt may have resulted from tilting along strike after peak metamorphism. Peak temperatures increase gradually from the Central Metavolcanic belt to MacLean Lake belt across the McLennan Lake tectonic zone. Peak pressures in the two belts are similar, implying that the Central Metavolcanic belt thrust sheet was probably thin. The P-T data for the MacLean Lake belt indicate a relatively high thermal gradient (40-50°C/km), similar to that in the metasedimentary Kisseynew domain in the orogen.


2013 ◽  
Vol 724-725 ◽  
pp. 1029-1032 ◽  
Author(s):  
Qing Lin He ◽  
Feng Gao ◽  
Hong Zhang Song ◽  
Xing Hu

The electric resistivity, Seebeck coefficients and power factors of Y1-xEuxBaCo4O7+δ(x = 0.0, 0.05, 0.1, 0.2) ceramics were investigated from 400K to 1000K. The results show that the presence of Eu decreases electrical resistivity, and has little effect on Seebeck coefficients of the samples. The activation energy of conductivity is calculated by the Arrhenius plots in the semiconductive region. According to power factors, the optimum Eu substitution amount is x = 0.1, which results in a higher power factor of 67.5 μWm-1K-2at 1000K, 30% higher than unmodified sample YBaCo4O7+δ.


2013 ◽  
Vol 1490 ◽  
pp. 3-8 ◽  
Author(s):  
Dimas S. Alfaruq ◽  
James Eilertsen ◽  
Philipp Thiel ◽  
Myriam H Aguirre ◽  
Eugenio Otal ◽  
...  

AbstractThe thermoelectric properties of W-substituted CaMn1-xWxO3-δ (x = 0.01, 0.03; 0.05) samples, prepared by soft chemistry, were investigated from 300 K to 1000 K and compared to Nb-substituted CaMn0.98Nb0.02O3-δ. All compositions exhibit both an increase in absolute Seebeck coefficient and electrical resistivity with temperature. Moreover, compared to the Nb-substituted sample, the thermal conductivity of the W-substituted samples was strongly reduced. This reduction is attributed to the nearly two times greater mass of tungsten. Consequently, a ZT of 0.19 was found in CaMn0.97W0.03O3-δ at 1000 K, which was larger than ZT exhibited by the 2% Nb-doped sample.


2012 ◽  
Vol 562-564 ◽  
pp. 477-481
Author(s):  
Rui Xu

The directional solidification of the ternary Al alloy with composition of 2.6 at%Ni, 0.9 at%Y and 96.5 at% Al was carried out under the temperature gradient of 5 K/mm and the droping velocities of 0.5 mm/min, 1 mm/min, 5 mm/min, 10 mm/min, and 25 mm/min. The microstructure of the Al-Ni-Y ternary alloy was also analyzed by X-ray diffraction and optical microscope. The experimental results show that the microstructures of the Al-Ni-Y ternary alloy are consisted of ª-Al2, Al3Ni and Y4Ni6Al23phase when the alloy was directionally solidified in all directionally solidified rates in the experiments. No primary -Al can be found in the sample with directionally solidified rate of 0.5 mm/min. When the rates higher than 1 mm/min, the primary ª-Al can be observed. The microstructure of the directionally solidified alloy becomes finer and the primary ª-Al is smaller gradually with the increasing of growth velocities when the dropping rate of directional solidification is higher than 5 min/min. Two eutectic structures, Y4Ni6Al23andª-Al eutectic and Al3Ni and ª-Al eutectic, can be found when the dropping rate is higher than 10 mm/min.


2012 ◽  
Vol 622-623 ◽  
pp. 726-733 ◽  
Author(s):  
Weerasak Somkhunthot ◽  
Nuwat Pimpabute ◽  
Tosawat Seetawan

Thin films thermoelectric module fabricated by pulsed-dc magnetron sputtering system using Ca3Co4O9(p-type) and ZnO (n-type) targets of 60 mm diameter and 2.5 mm thickness, which were made from powder precursor, and obtained by solid state reaction. Thin films of p-Ca-Co-O (Seebeck coefficient = 143.85 µV/K, electrical resistivity = 4.80 mΩm, power factor = 4.31 µW/m K2) and n-ZnO (Seebeck coefficient =229.24 µV/K, electrical resistivity = 5.93 mΩm, power factor = 8.86 µW/m K2) were used to make a thermoelectric module, which consist of four pairs of legs connected by copper electrodes (0.5 mm thickness, 3.0 mm width, and 3.0-8.0 mm length). Each leg is 3.0 mm width, 20.0 mm length, and 0.44 µm thickness on a glass substrate of 1.0 mm thickness in dimension 25.0x50.0 mm2. For preliminary test, a module was used to thermoelectric power generation. It was found that the open circuit voltage increased with increasing temperature difference from 3 mV at 5 K up to 20 mV at 78 K. The internal resistance of a module reached a value of 14.52 MΩ. This test indicated that a module can be generated the electrical power. Therefore, it can be used as an important platform for further thin films thermoelectric module research.


2009 ◽  
Vol 23 (16) ◽  
pp. 3331-3348 ◽  
Author(s):  
Q. R. HOU ◽  
W. ZHAO ◽  
Y. B. CHEN ◽  
Y. J. HE

N-type polycrystalline higher manganese silicide ( MnSi 1.7) films are prepared on thermally oxidized silicon substrates by magnetron sputtering. MnSi 1.85, Si , and carbon targets are used in the experiments. By co-sputtering of the MnSi 1.85 and Si targets, n-type MnSi 1.7 films are directly obtained. By increasing the Si content to the deposited films, both the Seebeck coefficient and electrical resistivity increase to high values. A Si intermediate layer between the MnSi 1.7 film and substrate plays an important role on the electrical properties of the films. Without the interlayer, the Seebeck coefficient is not stable and the electrical resistivity is higher. For preparation of MnSi 1.7 films by solid phase reaction, a sandwich structure Si / MnSi x/ Si (x < 1.7) and thermal annealing are used. A carbon cap layer is used as a doping source. With the carbon doping, the electrical resistivity of the MnSi 1.7 film decreases, while the Seebeck coefficient increases slightly. For reactive deposition, the MnSi x (x < 1.7) film is directly deposited on the heated substrate with a Si intermediate layer. By using a Si cap layer, a MnSi 1.7 film with a Seebeck coefficient of -292 μ V/K and electrical resistivity of 23 × 10-3 Ω- cm at room temperature is obtained. The power factor reaches 1636 μW/mK2 at 483 K. With such a high power factor, the n-type MnSi 1.7 material may be superior to p-type MnSi 1.7 material for the development of thermoelectric generators. Several smaller (0.036 - 0.099 eV ) and intermediate (0.10 - 0.28 eV ) activation energies are observed from the curves of logarithm of the resistivity versus reciprocal temperature. The larger activation energies (0.35 - 1.1 eV ) are consistent with the reported energy band gaps for higher manganese silicides.


Sign in / Sign up

Export Citation Format

Share Document