Wear Mechanisms of PCBN Cutting Tools in Hard and Dry Cutting GCr15 Bearing Steel

2011 ◽  
Vol 197-198 ◽  
pp. 1494-1499
Author(s):  
Rui Ping Liu ◽  
Fu Ming Deng ◽  
Xue Jun Lu

GCr15 bearing steel was turned with PCBN cutting tools in a manner of hard and dry cutting, and the characteristics and morphology of rake and flank face of PCBN cutting tools were observed, the element distribution of different regions of rake and flank face of PCBN cutting tools were tested and analyzed by use of EDS, and finally the wear mechanisms of PCBN cutting tools were discussed. The results showed that the wear areas of rake and flank face of PCBN cutting tools were small and mostly concentrated near the tip and sub-chamfering, and the reason was mechanical, oxidation, chemical and phase transition wear, which resulted in the joint action of tool wear.

2013 ◽  
Vol 770 ◽  
pp. 74-77 ◽  
Author(s):  
Jin Xing Kong ◽  
Liang Li ◽  
Dong Ming Xu ◽  
Ning He

Pure iron is a kind of high plasticity and toughness material. In the process of cutting pure iron, the tool wear is very serious. In this paper, three kinds of cutting tools KC5010, K313 and 1105 are used in the cutting pure iron process and the tool wear tests in dry cutting condition with different cutting parameters have been carried out. According to the results, the tool wear mechanisms and tool life of three kinds of cutting tools have been compared and analyzed. It is concluded that the tool life of K313 is better than KC5010 and 1105 and the three kinds of tool mechanisms are primarily adhesion wear, diffusion wear and oxidation wear.


2013 ◽  
Vol 589-590 ◽  
pp. 23-27 ◽  
Author(s):  
Dong Wang ◽  
Jun Zhao ◽  
Xiao Xiao Chen ◽  
Yong Hui Zhou

An experimental investigation of wear mechanisms in high-speed turning of superalloy GH2132 with Al2O3-based ceramic was conducted under dry cutting condition. The tool wear mechanisms were characterized by observation of tool wear morphology using scanning electron microscopy (SEM) and detection of the element distribution of the worn tool surface utilizing energy dispersive X-ray spectroscopy (EDS). The results of turning experiments indicated that the major wear mechanisms of the ceramic cutting tool were synergistic interaction between abrasive wear and adhesive wear, and meanwhile the micro-chipping was also observed. It is also shown that cutting distance of the Al2O3-TiC ceramic cutting tool at the speed of 420 m/min was higher than that of the speed of 360 m/min and 540 m/min.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 733-742
Author(s):  
S. Böhm ◽  
A. Ahsan ◽  
J. Kröger ◽  
J. Witte

AbstractIn recent years surface texturing of the cutting tools has proved to improve tribological characteristics at tool/chip and tool/workpiece interface and help to reduce cutting and feed forces as well as tool wear. Most, if not all, of the studies have focused on subtractively made textures whereby the material is removed from the surface. This study investigates the performance of additively made surface structures whereby hard ceramic particles are dispersed in the form of dome shaped textures on the surface of the cutting tools using solid state millisecond pulsed laser (pulsed laser implantation). Dry cutting tests were performed on ductile cast iron. The results show a greater reduction of process forces with implantation of flank face as compared to rake face. Both cutting and feed forces were reduced by 10% compared to the non-structured tool. In addition, the tool life increased by a factor of 3 whereas the average flank wear reduced by as much as 80% and cutting edge rounding by up to 60%.


2008 ◽  
Vol 375-376 ◽  
pp. 102-106
Author(s):  
Hai Dong Yang ◽  
Xi Quan Xia ◽  
Wen Lin Chen ◽  
Ning Liu ◽  
Chong Gao Zhang

The two cutting tools obtained from ultra-fine grade Ti (C,N)-based cermets were tested in the dry cutting of a medium carbon steel (AISI1045). Microstructure and mechanical properties were studied. Wear mechanisms (mainly diffusion and oxidation) were investigated in detail and compared each other in order to better understand key aspects due to thermal wear mechanisms. Comparing tool A with B, under the adopted cutting conditions, the tool A has a better resistance to oxidation deformation in machining medium carbon steel due to the higher hardness, although tool B has higher bending strength and fracture toughness.


2012 ◽  
Vol 562-564 ◽  
pp. 619-622
Author(s):  
Ji Ming Xiao ◽  
Li Jing Bai ◽  
Yan Li ◽  
Jian Ming Zheng ◽  
Qi Long Yuan

High-speed steel (HSS) turning tools was designed and sharpened according to the angles of the complex shape cutting tools. CrAlTiN coating was deposited using unbalance magnetron sputtering plating technique. By dry turning tests, the wear characteristics and wear mechanisms of the face were investigated. The results show that the face wear of the coated HSS tools is obviously different from that of the uncoated tools, the crater width is smaller, the boundary is jagged and the lowest position is away from the major cutting edge. Adhesive wear and local adhesive wear are the main wear mechanisms.


1997 ◽  
Vol 119 (1) ◽  
pp. 8-17 ◽  
Author(s):  
S.-S. Cho ◽  
K. Komvopoulos

Turning experiments were performed with cemented WC-Co cutting tools coated with two-layer and three-layer overcoats of TiC/Al2O3 and TiC/Al2O3/TiN, respectively. For comparison, uncoated WC-Co tools were also tested under similar cutting conditions. The predominant wear mechanisms of the various ceramic overcoats and cemented WC-Co were investigated using surface profilometry, scanning electron microscopy, and energy dispersive X-ray analysis. Representative results of the tool wear behavior are presented, and the significance of each ceramic layer on the overall tool wear resistance is interpreted in light of the identified dominant wear mechanisms. Delamination wear characterized by the propagation and linkage of surface, subsurface, and interfacial cracks, abrasion, surface plastic shearing, plucking of carbide grains, and dissolution/diffusion are shown to occur depending on the tool material. These wear processes are not mutually exclusive; they may occur simultaneously at different positions on the same tool surface. Based on nose wear data, correlations between wear lives of coated and uncoated tools and feedrate are established.


2013 ◽  
Vol 651 ◽  
pp. 338-343 ◽  
Author(s):  
Alokesh Pramanik ◽  
M.N. Islam ◽  
Animesh Basak ◽  
Guy Littlefair

This paper investigates the machining mechanism of titanium alloys and analyses those understandings systematically to give a solid understanding with latest developments on machining of titanium alloys. The chip formation mechanism and wear of different cutting tools have been analyzed thoroughly based on the available literature. It is found that the deformation mechanism during machining of titanium alloys is complex and it takes place through several processes. Abrasion, attrition, diffusion–dissolution, thermal crack and plastic deformation are main tool wear mechanisms.


2012 ◽  
Vol 488-489 ◽  
pp. 462-467
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis ◽  
K. Kamdani

This paper presents the results of experimental investigation conducted on a vertical machining centre (VMC) to ascertain the effectiveness of TiAlN/AlCrN multilayer coated carbide inserts in end milling of AISI D2 hardened steel (58-62 HRC) In high-speed dry hard milling, different cutting speed (v) and radial depth of cut (dr) were applied. Tool failure modes and wear mechanisms were examined at various cutting parameters. Flank wear, chipping and breakage at cutting edge were found to be the predominant tool failure for the cutting tools. Built-up edge, adhesion and abrasive are the wear mechanisms observed on the cutting tools. The highest volume of material removed, VMR attained was 1500 mm3, meanwhile the highest tool life (T) was 4.97 min. The surface roughness, Ra values from 0.20 to 0.45 μm can be attained in the workpiece with a high volume material removed. The relationship of tool wear performance and surface integrity was established to lead an optimum parameter in order to have high volume material removed, maximum tool life as well as acceptable surface finish.


2016 ◽  
Vol 38 (1) ◽  
pp. 45-49
Author(s):  
Radosław W. Maruda ◽  
Natalia Szczotkarz

Abstract The paper presents the influence of coatings applied with the use of PVD method on cutting tools on the wear of the tool and compares it with an uncoated P25 cemented carbide plate. During the experiment, two types of TiAlN coatings were used, applied in various proportions, as well as TiN coating. During the tests, the average width of the wear band on the flank face in B VBBzone and the width of KBcrater were monitored. Moreover, the scanning analysis of the tool was conducted in order to determine the intensity of adhesive wear. The lowest values of selected tool wear indicators were found out with the use of TiAlN coating applied in eight layers in the proportions 33/67% -TiN/TiAlN. The scanning analysis proved the highest adhesive wear of the uncoated P25 cemented carbide plate, as well as increased abrasive wear of the flank face and the formation of a crater in comparison with coated plates.


Sign in / Sign up

Export Citation Format

Share Document