Modification of Surface Velocity Calculation Formula in Tunnel Blasting

2011 ◽  
Vol 199-200 ◽  
pp. 882-885
Author(s):  
Hai Liang Wang ◽  
Xian Bin Xue ◽  
Shao Xian Li ◽  
Chuan Li

The blasting vibration in Qingdao Cross-harbor Tunnel Guide Line Project is monitored and analyzed. We discover that the surface particle vibration velocity in the range of 5metres around the working face reduces fast, and that does not conform to Sadaovsk formula. This inquiry adopts the hypothesis-fitting-testing method to modify Sadaovsk formula. The empirical formula of the ground vibration velocity caused by blasting in tunnel is obtained.

2013 ◽  
Vol 838-841 ◽  
pp. 1420-1424
Author(s):  
Jun Tao Wang ◽  
Qing Yang ◽  
Hai Liang Wang

In order to study ground vibration laws of shallow tunnel blasting construction, so in this paper, we put Third Bid of Qingdao Metro Line 3 as the engineering background, selecting the monitoring segment blasting vibration monitoring, studying blasting vibration peak velocity. Basing on the measured data, analyzing the variation regularity resultant velocity vector peak velocity along the tunnel axis direction. The study found that resultant velocity vector peak did not occur just above the tunnel workface, but away from the working face in 1m ~ 1.5m the range. resultant velocity vector peak located in front of the workface is 1.02 to 1.45 times of resultant velocity vector peak located behind of the workface. resultant velocity vector peak located in front of the workface is 2.26 to 2.5 times of resultant velocity vector peak above the workface. resultant velocity vector peak behind the workface is 2.3 to 3 times of resultant velocity vector peak above the workface.


2012 ◽  
Vol 446-449 ◽  
pp. 2462-2465 ◽  
Author(s):  
Hong De Wang ◽  
Xiu Feng Shen

Abstract. Through the analysis and research on the vibration effect caused by the urban New Austrian (shallow embedded) metro tunnel blasting construction, the main harming effect of the blasting vibration on the surface buildings is summarized. According to the actual condition on the site of blasting construction in No.2 line of Dalian metro tunnel, the reasonable vibration monitoring plan for blasting vibration wave is established. At the same time, by means of the regression analysis about the monitoring results of blasting vibration, the vibration wave’s regression formula are set up, which can expression the correlation among the vibration velocity, the charge weight, the distance between the blasting fountains and the buildings. The results show that the Sadaovsk formula can be use to describe the effect of the metro tunnel blasting construction on the surface buildings accurately and reasonably in this construction segment. This kind of regression analysis method can be use to direct subsequent blasting excavation.


2011 ◽  
Vol 199-200 ◽  
pp. 870-873
Author(s):  
Hai Liang Wang ◽  
Shu Cui Cong ◽  
Bi Jun Wang ◽  
Lin Sheng Liu

According to the tunnel blasting vibration test at Kiaochow bay Cross-harbor Tunnel Guide Line Project, the regulation of the tunnel vibration velocity has been studied. Based on the analytical results, this paper finds that the change regulation of vertical, horizontal radial and tangential vibration velocity as the different distances from the work face. The tunnel vibration velocity of the rear work face is greater than the unexcavated area. The peak value of the rear work face is 2-2.5 times as large as that of the front work face, vibration velocity of the front work face attenuates gently. The paper figures out the relationship between vibration velocity and distance from sensor to the work face, which can offer a reference to similar studies.


2011 ◽  
Vol 90-93 ◽  
pp. 2301-2306
Author(s):  
Zheng Guo Zhu ◽  
Ming Lei Sun ◽  
Yong Quan Zhu ◽  
Xing Liang Sun

In accordance with characteristics of super-small-distance tunnels in Nanjing metro, the peak value distribution of vibration velocity for existing tunnel was investigated when cut-hole blasted under the conditions of different surrounding rock Grades, followed by dynamic response rule of super-small-distance tunnels blasting. In addition, monitoring emphasis should be placed on upper bench for right tunnel blasting. Therefore, controlled measures of the small-distance tunnels were obtained during construction. Not only is the result fit for the metro tunnel, but it can be as reference for similar engineering.


2014 ◽  
Vol 971-973 ◽  
pp. 992-996
Author(s):  
Chun Lei Xin ◽  
Bo Gao

Although drilling and blasting method is widely used to excavate tunnel structures, it has great effect on adjacent ground structures. In order to find out the influence sphere and features of this construction method on overpass, three-dimensional numerical simulation method was used to analyze the displacement, stress and blasting vibration velocity of overpass. The results show that: (1) Drilling and blasting excavation method can cause differential settlement of stratum and overpass which is above the crown of tunnel. (2) The strong constraint structures of overpass are obviously affected by blasting vibration than other parts. (3) It should be taken extra protection measures at connection points between piers and decks as well as connection points between piers and stratum. (4) Horizontal vibration velocity caused by blasting excavation is lower than vertical vibration velocity. To control the vertical blasting vibration velocity is the essential to control the security of tunnel structure and upper structures. The above results certainly contribute to construct tunnel structures by using drilling and blasting excavation under complicated conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Lijun Chen ◽  
Jianxun Chen ◽  
Yanbin Luo ◽  
Yalong Guo ◽  
Yongjun Mu ◽  
...  

In order to study the propagation laws of blasting vibration waves in weak rock tunnels, the longitudinal and circumferential blasting vibration tests in Muzhailing Tunnel were carried out, and the measured data were analyzed and studied using the methods of Sadov’s nonlinear regression, Fourier transform, and Hilbert–Huang transform (HHT) to provide a reference for the optimization of blasting design of Muzhailing Tunnel or similar weak rock tunnels. The results showed that the tangential main frequency decreases rapidly and the radial main frequency decreases slowly with the increase of proportionate charge quantity. Under a certain charge quantity, as the distance from the explosion source increases, the spectrum width of the blasting vibration frequency becomes narrower, the overall energy is more concentrated, and the vibration frequency tends to be closer to the low frequency. At a certain distance from the explosive source, the frequency of blasting vibration decreases gradually, and the amplitude of low-frequency region increases with the increase of charge quantity. The vibration velocity on the left side of the tunnel is larger than that on the right side, and the vibration velocity at the vault and the arch foot of lower bench decreases rapidly, while the vibration velocity at the arch feet of upper bench and middle bench decreases slowly. The vibration frequencies of the left arch foot of the middle bench and the right arch foot of the upper bench are higher than those of other positions, while the frequencies of the left arch foot of the upper bench are the lowest. During tunnel blasting, the energy input to the strata media is mainly concentrated in the stage of the blasting of the cut hole. The blasting has more energy input to the left arch foot of the upper bench and the tunnel vault, which is consistent with the conclusion of frequency analysis.


2014 ◽  
Vol 501-504 ◽  
pp. 1846-1849
Author(s):  
Jin Kui Li ◽  
De Jun Wang ◽  
Yue Bo Fan

Mining method inevitably causes a certain degree of damage on the shaft and surrounding rock, and severe vibration can effect on the ground buildings. The Sectional blasting design was discussed on the base of stratigraphic features, field condition and the nearest distance from surrounding buildings to Cuchun Shaft of Dalian Subway 202 construction which is taken as blasting safety control distance in this paper. The control blasting technology with short footage, weak blasting was put forward to reducing blasting vibration. The ground vibration monitoring was carried through during shaft blasting. Particle vibration velocity was from 0.28 to 1.85 cm/s and main vibration frequency was from 16.97 to 42.24 Hz at different level blasting of the surrounding rock. The monitoring results show the blasting parameters and damping measures can meet requirements of Engineering and standardization of the industry. It can provide the scientific basis and technical support for subway construction damping optimization design.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Deqiang Yang ◽  
Xuguang Wang ◽  
Yinjun Wang ◽  
Huaming An ◽  
Zhen Lei

In the process of tunnel excavation, large charge wedge cutting blasting is widely used to improve the effect of cut blasting and speed up the excavation rate, which is tantamount to increasing the construction cost. In order to save economic cost and improve cutting blasting effect, wedge cutting models with five different cutting angles were experimented and studied by using concrete materials on the basis of similarity theory analysis. The relationships among cutting depth, blasting volume, blasting fragment, and cutting angle are studied and deduced by the dimensional analysis method. The polynomial fitting of cutting depth, blasting volume, blasting fragment, and cutting angle is carried out according to the experimental data, and the corresponding fitting formula is obtained. The optimum cutting depth, hole utilization rate, blasting volume, and blasting fragment were obtained when the wedge cutting angle was 67° under the same charge. The values were 1.665 × 10−1 m, 92.5%, 8.390 × 10−3 m3, and 49.07 mm, respectively. With the use of TC4850N type blasting vibration meter, the blasting vibrations on the wedge in four directions are tested and analyzed. The results show that when wedge cutting inclination is 65 degrees, the peak vibration velocity is the minimum and the vibration intensity of the wedge cutting inclined side is generally smaller than that of the vertical side. Considering the cutting depth, blasting volume, blasting fragment, blasting vibration hazard, drilling error, tunneling construction cost, and other factors, the 65°∼69° wedge cutting blasting in engineering practice can improve the blasting tunneling rate and increase economic benefits. The experimental results show that the blasting tunneling rate is increased and the economic benefit is increased with the minimum construction tunneling cost, which has certain engineering significance.


2010 ◽  
Vol 163-167 ◽  
pp. 2613-2617
Author(s):  
Hai Liang Wang ◽  
Tong Wei Gao

According to the 33 floors high building, blasting vibration monitoring had been carried on. The building, along Yunnan road tunnel of Qingdao Cross-harbor Tunnel Guide Line Project, has concrete frame structure. Monitoring data had been analyzed. Results showed that rules of vertical vibration velocity and main vibration frequency have similar relevance. Amplification effect of them was existed on the middle and top of the building. From the 2nd floor of downward ground to ground, the value of them suddenly decreased. Main vibration frequency is in the range of 101~102 order of magnitude.


Author(s):  
chen huang ◽  
youyi zhang ◽  
Jun Zhao

In order to study the dynamic response of adjacent buildings in the process of tunnel blasting excavation, taking Yangjia tunnel blasting through a five-story frame structure residential building as an example, the propagation law of blasting seismic wave was analyzed by using HHT method through on-site blasting monitoring. Then, the ALE algorithm in ANSYS/LS-DYNA software was used to establish a three-dimensional numerical model based on the surrounding rock-cutting section-structure coupling to study the dynamic response of adjacent buildings under the blasting vibration of tunnel. The results show that the HHT analysis method can clearly describe the energy distribution of vibration signals in the time and frequency domain. The energy carried by the blasting vibration signal is corresponding to the detonating section, and the maximum energy appears in the cutting section, which further verifying that the vibration effect caused by the cutting hole blasting is the strongest. In the process of tunnel blasting, the dynamic responses of beams, columns and exterior walls of adjacent buildings are not consistent and show different variation rules along the height direction. In addition, the stress centralization mainly occurs in the exterior wall of the building, the joint of the exterior wall and the column, the joint of the exterior wall and the beam, and the joint of the exterior wall and the floor and other non-weight bearing area, indicating that these parts are more likely to damage and crack in the process of tunnel blasting.


Sign in / Sign up

Export Citation Format

Share Document