Honda humanoid robots development

Author(s):  
Masato Hirose ◽  
Kenichi Ogawa

Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's ‘challenging spirit’.

2020 ◽  
Vol 35 ◽  
Author(s):  
Kuo-Yang Tu ◽  
Hong-Yu Lin ◽  
You-Ru Li ◽  
Che-Ping Hung ◽  
Jacky Baltes

Abstract A humanoid robot developed to play multievent athletes like human has paved a way for interesting and popular robotics research. One of the great dreams is to develop a humanoid robot being able to challenge human athletes. Therefore, the challenge of humanoid robots to play archery against human is organized at Taichung, Taiwan, in HuroCup, FIRA 2018, on August 7th. The difficulties of developing humanoid robot are not just on playing archery. The humanoid robots for HuroCup must make use of the same hardware for the 10 events. In this paper, the design and implementation of the humanoid robot for archery are proposed under the trade off with other nine events. Therefore, the humanoid robot must have some special design and development on software. More specially, the humanoid robot must use professional bow to challenge human for archery competition. Therefore, in this paper, special shooting posture under constrained arm structure and motion planning of both arms for more torque to play professional bow are proposed. In addition, the further development of humanoid robot to improve archery shooting is summarized.


Author(s):  
Jeakweon Han ◽  
Dennis Hong

Besides the difficulties in control and gait generation, designing a full-sized (taller than 1.3m) bipedal humanoid robot that can walk with two legs is a very challenging task, mainly due to the large torque requirements at the joints combined with the need for the actuators’ size and weight to be small. Most of the handful of successful humanoid robots in this size class that exist today utilize harmonic drives for gear reduction to gain high torque in a compact package. However, this makes the cost of such a robot too high and thus puts it out of reach of most of those who want to use it for general research, education and outreach activities. Besides the cost, the heavy weight of the robot also causes difficulties in handling and raises concerns for safety. In this paper we present the design of a new class of full-sized bipedal humanoid robots that is lightweight and low cost. This is achieved by utilizing spring assisted parallel four-bar linkages with synchronized actuation in the lower body to reduce the torque requirements of the individual actuators which also enables the use of off the shelf components to further reduce the cost significantly. The resulting savings in weight not only makes the operation of the robot safer, but also allows it to forgo the expensive force/torque sensors at the ankles and achieve stable bipedal walking only using the feedback from the IMU (Inertial Measurement Unit.) CHARLI-L (Cognitive Humanoid Autonomous Robot with Learning Intelligence - Lightweight) is developed using this approach and successfully demonstrated untethered bipedal locomotion using ZMP (Zero Moment Point) based control, stable omnidirectional gaits, and carrying out tasks autonomously using vision based localization.


2015 ◽  
Vol 761 ◽  
pp. 158-162
Author(s):  
Noraidah Blar ◽  
Fairul Azni Jafar ◽  
Syahril Anuar Idris ◽  
Mahasan Mat Ali

Robots are not rare applications anymore due to the advanced technology today. Everyone knows robots have been used in many fields. Humanoid robots are especially desirable in human society as they can work well in indoor environments that have been designed for humans. The technical characteristics for humanoid robot teacher listed in this paper are facial expression, walking, speaking and hearing, body gestures, and vision. These characteristics are believed to be essential in every humanoid robot involved in education. Technical explanations for each characteristic are provided throughout this paper. The list of robots that can be used as a robotic teacher is also given in this paper.


2011 ◽  
Vol 201-203 ◽  
pp. 1978-1982
Author(s):  
Tie Jun Zhao

This research is aimed at dynamically stable motion and safety of mobile humanoid robots expected to work in a human living space. The mechanism of the mobile humanoid robot YIREN is described. A highly flexible anthropomorphic 7-DOF robotic arm and a new waist configuration with parallel driving motor are developed. Because the dynamitic behavior of manipulator and waist has an effect on the stability of mobile humanoid robots, the dynamitic model is built. By using the zero moment point, dynamic effect of the waist is obtained. A basic control method of whole body cooperative dynamic moving is proposed that uses waist cooperative motion to compensate for moment generated by the trajectory of the arms and the correctness of analysis is verified by experiments.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4194 ◽  
Author(s):  
Hyun-Min Joe ◽  
Jun-Ho Oh

Research on a terrain-blind walking control that can walk stably on unknown and uneven terrain is an important research field for humanoid robots to achieve human-level walking abilities, and it is still a field that needs much improvement. This paper describes the design, implementation, and experimental results of a robust balance-control framework for the stable walking of a humanoid robot on unknown and uneven terrain. For robust balance-control against disturbances caused by uneven terrain, we propose a framework that combines a capture-point controller that modifies the control reference, and a balance controller that follows its control references in a cascading structure. The capture-point controller adjusts a zero-moment point reference to stabilize the perturbed capture-point from the disturbance, and the adjusted zero-moment point reference is utilized as a control reference for the balance controller, comprised of zero-moment point, leg length, and foot orientation controllers. By adjusting the zero-moment point reference according to the disturbance, our zero-moment point controller guarantees robust zero-moment point control performance in uneven terrain, unlike previous zero-moment point controllers. In addition, for fast posture stabilization in uneven terrain, we applied a proportional-derivative admittance controller to the leg length and foot orientation controllers to rapidly adapt these parts of the robot to uneven terrain without vibration. Furthermore, to activate position or force control depending on the gait phase of a robot, we applied gain scheduling to the leg length and foot orientation controllers, which simplifies their implementation. The effectiveness of the proposed control framework was verified by stable walking performance on various uneven terrains, such as slopes, stone fields, and lawns.


Author(s):  
Giorgio Metta

This chapter outlines a number of research lines that, starting from the observation of nature, attempt to mimic human behavior in humanoid robots. Humanoid robotics is one of the most exciting proving grounds for the development of biologically inspired hardware and software—machines that try to recreate billions of years of evolution with some of the abilities and characteristics of living beings. Humanoids could be especially useful for their ability to “live” in human-populated environments, occupying the same physical space as people and using tools that have been designed for people. Natural human–robot interaction is also an important facet of humanoid research. Finally, learning and adapting from experience, the hallmark of human intelligence, may require some approximation to the human body in order to attain similar capacities to humans. This chapter focuses particularly on compliant actuation, soft robotics, biomimetic robot vision, robot touch, and brain-inspired motor control in the context of the iCub humanoid robot.


2010 ◽  
Vol 07 (01) ◽  
pp. 157-182 ◽  
Author(s):  
HAO GU ◽  
MARCO CECCARELLI ◽  
GIUSEPPE CARBONE

In this paper, problems for an anthropomorphic robot arm are approached for an application in a humanoid robot with the specific features of cost oriented design and user-friendly operation. One DOF solution is proposed by using a suitable combination of gearing systems, clutches, and linkages. Models and dynamic simulations are used both for designing the system and checking the operation feasibility.


2020 ◽  
Vol 12 (1) ◽  
pp. 58-73
Author(s):  
Sofia Thunberg ◽  
Tom Ziemke

AbstractInteraction between humans and robots will benefit if people have at least a rough mental model of what a robot knows about the world and what it plans to do. But how do we design human-robot interactions to facilitate this? Previous research has shown that one can change people’s mental models of robots by manipulating the robots’ physical appearance. However, this has mostly not been done in a user-centred way, i.e. without a focus on what users need and want. Starting from theories of how humans form and adapt mental models of others, we investigated how the participatory design method, PICTIVE, can be used to generate design ideas about how a humanoid robot could communicate. Five participants went through three phases based on eight scenarios from the state-of-the-art tasks in the RoboCup@Home social robotics competition. The results indicate that participatory design can be a suitable method to generate design concepts for robots’ communication in human-robot interaction.


2018 ◽  
Vol 8 (8) ◽  
pp. 1257 ◽  
Author(s):  
Tianqi Yang ◽  
Weimin Zhang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Libo Meng ◽  
...  

The most important feature of this paper is to transform the complex motion of robot turning into a simple translational motion, thus simplifying the dynamic model. Compared with the method that generates a center of mass (COM) trajectory directly by the inverted pendulum model, this method is more precise. The non-inertial reference is introduced in the turning walk. This method can translate the turning walk into a straight-line walk when the inertial forces act on the robot. The dynamics of the robot model, called linear inverted pendulum (LIP), are changed and improved dynamics are derived to make them apply to the turning walk model. Then, we expend the new LIP model and control the zero moment point (ZMP) to guarantee the stability of the unstable parts of this model in order to generate a stable COM trajectory. We present simulation results for the improved LIP dynamics and verify the stability of the robot turning.


Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Jun Ho Oh, Professor of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and Director of KAIST’s Hubolab. Determined to build a humanoid robot in the early 2000s to compete with Japan’s humanoids, Dr Oh and KAIST created the KHR1. This research led to seven more advanced versions of a biped humanoid robot and the founding of the Robot for Artificial Intelligence and Boundless Walking (Rainbow) Co., a professional technological mechatronics company. In this interview, Dr Oh shares the history and success of Korea’s humanoid robot research. Findings Dr Oh received his BSc in 1977 and MSc in Mechanical Engineering in 1979 from Yonsei University. Oh worked as a Researcher for the Korea Atomic Energy Research Institute before receiving his PhD from the University of California (UC) Berkeley in mechanical engineering in 1985. After his PhD, Oh remained at UC Berkeley to do Postdoctoral research. Since 1985, Oh has been a Professor of Mechanical Engineering at KAIST. He was a Visiting Professor from 1996 to 1997 at the University of Texas Austin. Oh served as the Vice President of KAIST from 2013-2014. In addition to teaching, Oh applied his expertise in robotics, mechatronics, automatic and real-time control to the commercial development of a series of humanoid robots. Originality/value Highly self-motivated and always determined, Dr Oh’s initial dream of building the first Korean humanoid bipedal robot has led him to become one of the world leaders of humanoid robots. He has contributed widely to the field over the nearly past two decades with the development of five versions of the HUBO robot. Oh led Team KAIST to win the 2015 DARPA Robotics Challenge (DRC) and a grand prize of US$2m with its humanoid robot DRC-HUBO+, beating 23 teams from six countries. Oh serves as a robotics policy consultant for the Korean Ministry of Commerce Industry and Energy. He was awarded the 2016 Changjo Medal for Science and Technology, the 2016 Ho-Am Prize for engineering, and the 2010 KAIST Distinguished Professor award. He is a member of the Korea Academy of Science and Technology.


Sign in / Sign up

Export Citation Format

Share Document