A New Design of Inflatable and Lightweight Device for Planetary Exploration

2011 ◽  
Vol 217-218 ◽  
pp. 158-162 ◽  
Author(s):  
Long Bin Liu ◽  
Dong Xu Liu ◽  
Ming Yun Lv

Inflatable structures have many potential applications in space collapsible structures, this paper based on the premise of the same exploring features on the Planetary Exploration Device (PED) designs a new type of inflatable and lightweight model of PED. The device structure is designed to be a wheel style, which can be folded together in the transport process and in non-working state. Comparing with traditional devices, the new Wheeled Planetary Exploration Device (CWPED) reduces the space of transporting the exploration equipments and decreases the transport costs, moreover, this device provides convenient conditions for the equipment package of the CWPED, and there are evident advantages in the aspects of handing, solar absorption, volume and quality. This article mainly introduces the preliminary design of the CWPED, and the structural characteristics of the device, the principle of motion control and the design of wheeled body skin material are analyzed.

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Chang Lu ◽  
Qingjian Lu ◽  
Min Gao ◽  
Yuan Lin

The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports “quasi-simultaneous” IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.


2021 ◽  
pp. 100435
Author(s):  
Yan Wang ◽  
Noura Dawas Alkhaldi ◽  
Nil Kanatha Pandey ◽  
Lalit Chudal ◽  
Lingyun Wang ◽  
...  

2001 ◽  
Author(s):  
John R. Haas

Abstract This paper describes a new type of hydraulic rotary actuator specifically developed to provide precision motion control in a very large, man rated, underwater telerobotic manipulator system. The high pressure, high torque rotary actuators are hydrostatically balanced, provide continuous rotation, constant torque output, exhibit minimal “stick-slip” and zero backlash. It is believed that the combination of features and the performance exhibited by these actuators represent an improvement in actuator technology to such an extent as to make projects previously determined unfeasible, now practical. Features of particular design value are a very large diameter through bore, and a truly modular design permitting use as an integral structural member. This paper will address design rationale, operating principles, key design features, product development highlights, an astronaut trainer case study, future development and potential applications.


1996 ◽  
Vol 445 ◽  
Author(s):  
W. Kowbel ◽  
V. Chellappa ◽  
J.C. Withers

AbstractRapid advances in high power electronics packaging require the development of new heat sink materials. Advanced composites designed to provide thermal expansion control as well as improved thermal conductivity have the potential to provide benefits in the removal of excess heat from electronic devices. Carbon-carbon (C-C) composits are under consideration for several military and space electronic applications including SEM-E electronic boxes. The high cost of C-C composits has greatly hindered their wide spread commercialization. A new manufacturing process has been developed to produce high thermal conductivity (over 400 W/mK) C-C composites at greatly reduced cost (less than $50/lb). This new material has potential applications as both a heat sink and a substrate. Dielectric coatings such as A1N and diamond were applied to this new type of heat sink material. Processing, as well as mechanical and thermal properties of this new class of heat sink material will be presented.


2018 ◽  
Vol 25 (6) ◽  
pp. 1059-1073 ◽  
Author(s):  
Weifeng Chen ◽  
Hu Weimin ◽  
Dejiang Li ◽  
Shaona Chen ◽  
Zhongxu Dai

AbstractGraphene (graphene) is a new type of two-dimensional inorganic nanomaterial developed in recent years. It can be used as an ideal inorganic nanofiller for the preparation of polymer nanocomposites because of its high mechanical strength, excellent electrical conductivity and plentiful availability (from graphite). In this review, the preparation methods of graphene/polymer nanocomposites, including solution blending, melt blending and in situ polymerization, are introduced in order to study the relationship between these methods and the final characteristics and properties. Each method has an influence on the final characteristics and properties of the nanocomposites. The advantages and disadvantages of these methods are discussed. In addition, a variety of nanocomposites with different properties, such as mechanical properties, electronic conductivity, thermal conductivity and thermal properties, are summarized comprehensively. The potential applications of these nanocomposites in conductive materials, electromagnetic shielding materials, photocatalytic materials and so on, are briefly presented. This review demonstrates that polymer/graphene nanocomposites exhibit superior comprehensive performance and will be applied in the fields of new materials and novel devices. Future research directions of the nanocomposites are also presented.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 547 ◽  
Author(s):  
Mattia Pierpaoli ◽  
Mateusz Ficek ◽  
Michał Rycewicz ◽  
Mirosław Sawczak ◽  
Jakub Karczewski ◽  
...  

Carbon nanowalls (CNWs) have attracted much attention for numerous applications in electrical devices because of their peculiar structural characteristics. However, it is possible to set synthesis parameters to vary the electrical and optical properties of such CNWs. In this paper, we demonstrate the direct growth of highly transparent boron-doped nanowalls (B-CNWs) on optical grade fused quartz. The effect of growth temperature and boron doping on the behavior of boron-doped carbon nanowalls grown on quartz was studied in particular. Temperature and boron inclusion doping level allow for direct tuning of CNW morphology. It is possible to operate with both parameters to obtain a transparent and conductive film; however, boron doping is a preferred factor to maintain the transparency in the visible region, while a higher growth temperature is more effective to improve conductance. Light transmittance and electrical conductivity are mainly influenced by growth temperature and then by boron doping. Tailoring B-CNWs has important implications for potential applications of such electrically conductive transparent electrodes designed for energy conversion and storage devices.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1873
Author(s):  
Petronela Pascariu ◽  
Niculae Olaru ◽  
Aurelian Rotaru ◽  
Anton Airinei

A new type of material based on carbon/ZnO nanostructures that possesses both adsorption and photocatalytic properties was obtained in three stages: cellulose acetate butyrate (CAB) microfiber mats prepared by the electrospinning method, ZnO nanostructures growth by dipping and hydrothermal methods, and finally thermal calcination at 600 °C in N2 for 30 min. X-ray diffraction (XRD) confirmed the structural characteristics. It was found that ZnO possesses a hexagonal wurtzite crystalline structure. The ZnO nanocrystals with star-like and nanorod shapes were evidenced by scanning electron microscopy (SEM) measurements. A significant decrease in Eg value was found for carbon/ZnO hybrid materials (2.51 eV) as compared to ZnO nanostructures (3.21 eV). The photocatalytic activity was evaluated by studying the degradation of three dyes, Methylene Blue (MB), Rhodamine B (RhB) and Congo Red (CR) under visible-light irradiation. Therefore, the maximum color removal efficiency (both adsorption and photocatalytic processes) was: 97.97% of MB (C0 = 10 mg/L), 98.34% of RhB (C0 = 5 mg/L), and 91.93% of CR (C0 = 10 mg/L). Moreover, the value of the rate constant (k) was found to be 0.29 × 10−2 min−1. The novelty of this study relies on obtaining new photocatalysts based on carbon/ZnO using cheap and accessible raw materials, and low-cost preparation techniques.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987566
Author(s):  
Hanwen Yu ◽  
Xianying Feng ◽  
Qun Sun

This article presents a new micro-feed mechanism, whose main transmission component is the nut–rotary ball screw pair. The screw and nut are driven by two motors, and they rotate in the same direction, with their movements enabling micro-feeding. The main contribution of the micro-feed mechanism is to avoid the inevitable low-speed nonlinear creeping phenomenon caused by the inherent properties of traditional electromechanical servo system structure, thus realizing high precision micro-feed. In this study, the motion state of the working ball is analyzed using the principle of differential geometry, the friction at the contact points is calculated, the balance equation for force and moment is established, the influences of the screw and nut on the kinematic parameters of the ball at different velocities and the differences in the motion states of the ball in different drive modes are studied, and the mechanical efficiency of the dual-driven ball screw mechanism is calculated. The potential applications of the new micro-feed mechanism and the results of numerical analysis can be applied to advanced technology fields such as robotics, suspensions, powertrain, national defense, integrated electronics, optoelectronics, medicine, and genetic engineering, so that the new system can have a lower stable speed limit and achieve precise micro-feed control.


Author(s):  
Dina Joy K. Abulon ◽  
J. Michael McCarthy

Abstract In the design of practical grasping tools such as forceps or grippers, it may be desirable to create a compact, lightweight, and easily manufactured tool. Origami inspired designs can help simplify gripper manufacturing to a single planar sheet of material while still allowing for deployment and actuation. Inflatable structures can reduce weight and be compacted. This paper explores the design of an inflatable, deployable, action origami inspired gripper through the development of a predictive model, prototype fabrication, and preliminary design assessments.


Photonics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Igor V. Minin ◽  
Cheng-Yang Liu ◽  
Yury E. Geints ◽  
Oleg V. Minin

The study of accelerating Airy-family beams has made significant progress, not only in terms of numerical and experimental investigations, but also in conjunction with many potential applications. However, the curvature of such beams (and hence their acceleration) is usually greater than the wavelength. Relatively recently, a new type of localized wave beams with subwavelength curvature, called photonic hooks, was discovered. This paper briefly reviews the substantial literature concerning photonic jet and photonic hook phenomena, based on the photonic jet principle. Meanwhile, the photonic jet ensemble can be produced by optical wave diffraction at 2D phase diffraction gratings. The guidelines of jets’ efficient manipulation, through the variation of both the shape and spatial period of diffraction grating rulings, are considered. Amazingly, the mesoscale dielectric Janus particle, with broken shape or refractive index symmetry, is used to generate the curved photonic jet—a photonic hook—emerging from its shadow-side surface. Using the photonic hook, the resolution of optical scanning systems can be improved to develop optomechanical tweezers for moving nanoparticles, cells, bacteria and viruses along curved paths and around transparent obstacles. These unique properties of photonic jets and hooks combine to afford important applications for low-loss waveguiding, subdiffraction-resolution nanopatterning and nanolithography.


Sign in / Sign up

Export Citation Format

Share Document