Evaluation of the Influence of Acid Rain on the Property of Plant Mediums by Simulation

2011 ◽  
Vol 236-238 ◽  
pp. 2997-3000
Author(s):  
Jia Horng Lin ◽  
Jin Mao Chen ◽  
Ching Wen Lin ◽  
Wen Hao Hsing ◽  
Chen Fang Tsai ◽  
...  

Acid rain has drawn much attention recently. This study was about evaluating the acid-rain-resistant and eco wall which was made of cotton fibers and Tencel fibers. In the experiment, two types of fibers were immersed in stimulated-acid-rain solutions for a week and weighted respectively after drying. This same procedure was repeated weekly three times; meanwhile, the fibers’ pH values were measured daily. The result showed that cotton fibers surpassed Tencel fibers, demonstrating smaller weight losses and positive pH results. The cotton fibers were able to adjust its pH value to 6.8, which provided a suitable environment for plants.

2021 ◽  
Author(s):  
xia ye ◽  
Enlong Liu ◽  
Baofeng Di ◽  
yayang yu

Abstract In this paper, the sulfuric acid solution is diluted to pH 5.0, 4.0 and 3.0 to simulate the acid rain condition, and the triaxial compressional tests and scanning electron microscope are carried out to study the mechanical properties and evolution of the microstructure of the saturated loess samples. The results demonstrate that acid rain increases the porosity of loess samples, and the pore distribution is not uniform, so that the mechanical properties of loess samples change. With the decrease of pH value, the peak value of the deviatoric stress and the volumetric contraction of loess samples decreases, which causes the strength of soil to decrease. Furthermore, the framework of the chemical-mechanical model for loess under the action of acid rain is established, in which the loess is considered as porous medium material, and the variable of acid rain at different pH values through the degree of chemical reaction is taken into account in the double-hardening model, and the model is also verified by the triaxial test results finally.


2008 ◽  
Vol 73 (4) ◽  
pp. 405-413 ◽  
Author(s):  
Ana Cuculovic ◽  
Mirjana Pavlovic ◽  
Dragan Veselinovic ◽  
Scepan Miljanic

Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr) from dry Cetraria islandica (L.) Ach. lichen was performed using solutions similar to acid rain (solution A H2SO4-HNO3-(NH4)2SO4 and solution B H2SO4- -HNO3-(NH4)2SO4-NH4NO3). The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and pH 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centers) of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues).


2016 ◽  
Vol 87 (18) ◽  
pp. 2204-2213 ◽  
Author(s):  
Rechana Remadevi ◽  
Stuart Gordon ◽  
Xungai Wang ◽  
Rangam Rajkhowa

The treatment of cotton fibers using different chemicals, such as alkalis, acids and salt solutions, has captured the attention of researchers because of their important effects in dyeing, cross-linking and mercerizing processes. However, these agents are difficult in terms of process application and the requirement for major effluent treatment prior to discharge. In this paper, we report on the treatment of cotton in aqueous glycine solutions that were moderated, utilizing glycine’s amphoteric nature at different pH values, to enhance the morphological and moisture regain properties of cotton fiber. Treatment in an aqueous glycine solution buffered to pH 11 increased fiber ribbon width by 4.5%, cross-sectional area by 53% and moisture regain by 16%. Changes were dependent on the treatment solution pH value. This paper describes the glycine treatments and their influence on the cotton fiber cross-sectional morphology and regain properties. The results suggest that at suitable pH values aqueous glycine solutions have the ability to enhance cotton fibers in ways very similar to mercerizing.


2020 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Ján Iždinský ◽  
Ladislav Reinprecht ◽  
Ján Sedliačik ◽  
Jozef Kúdela ◽  
Viera Kučerová

The bonding of wood with assembly adhesives is crucial for manufacturing wood composites, such as solid wood panels, glulam, furniture parts, and sport and musical instruments. This work investigates 13 hardwoods—bangkirai, beech, black locust, bubinga, ipé, iroko, maçaranduba, meranti, oak, palisander, sapelli, wengé and zebrano—and analyzes the impact of their selected structural and physical characteristics (e.g., the density, cold water extract, pH value, roughness, and wettability) on the adhesion strength with the polyvinyl acetate (PVAc) adhesive Multibond SK8. The adhesion strength of the bonded hardwoods, determined by the standard EN 205, ranged in the dry state from 9.5 MPa to 17.2 MPa, from 0.6 MPa to 2.6 MPa in the wet state, and from 8.5 MPa to 19.2 MPa in the reconditioned state. The adhesion strength in the dry state of the bonded hardwoods was not influenced by their cold water extracts, pH values, or roughness parallel with the grain. On the contrary, the adhesion strength was significantly with positive tendency influenced by their higher densities, lower roughness parameters perpendicular to the grain, and lower water contact angles.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 587 ◽  
Author(s):  
Yan-Dong Guo ◽  
Jun-Feng Su ◽  
Ru Mu ◽  
Xin-Yu Wang ◽  
Xiao-Long Zhang ◽  
...  

Graphene has attracted attention in the material field of functional microcapsules because of its excellent characteristics. The content and state of graphene in shells are critical for the properties of microcapsules, which are greatly affected by the charge adsorption equilibrium. The aim of this work was to investigate the effect of pH value on the microstructure and properties of self-assembly graphene microcapsules in regard to chemical engineering. Microcapsule samples were prepared containing liquid paraffin by a self-assembly polymerization method with graphene/organic hybrid shells. The morphology, average size and shell thickness parameters were investigated for five microcapsule samples fabricated under pH values of 3, 4, 5, 6 and 7. The existence and state of graphene in dry microcapsule samples were analyzed by using methods of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Fourier Transform Infrared Spectoscopy (FT-IR) and Energy Dispersive Spectrometer (EDS) were applied to analyze the graphene content in shells. These results proved that graphene had existed in shells and the pH values greatly influenced the graphene deposition on shells. It was found that the microcapsule sample fabricated under pH = 5 experienced the largest graphene deposited on shells with the help of macromolecules entanglement and electrostatic adherence. This microcapsules sample had enhanced thermal stability and larger thermal conductivity because of additional graphene in shells. Nanoindentation tests showed this sample had the capability of deforming resistance under pressure coming from the composite structure of graphene/polymer structure. Moreover, more graphene decreased the penetrability of core material out of microcapsule shells.


2012 ◽  
Vol 454 ◽  
pp. 324-328
Author(s):  
Yan He ◽  
Ya Jing Liu ◽  
Yong Lin Cao ◽  
Li Xia Zhou

Infra-red absorption spectrometry, X-ray diffraction observations and characterization tests based on silicon molybdenum colorimetric method were used to investigate the optimal pH value controlling the stability of the silicic acid form. The experiment process was done by using sodium silicate as raw material. The results showed that the solution of silicate influenced the polymerization. The active silicic acid solution with a certain degree of polymerization was obtained by controlling the pH values.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zheng Li ◽  
Qiuji Wu ◽  
Xiangyu Meng ◽  
Haijun Yu ◽  
Dazhen Jiang ◽  
...  

AbstractRadiotherapy-related caries is a complication of radiotherapy for nasopharyngeal carcinoma; however, factors influencing the occurrence, accurate prediction of onset, and protective factors of radiotherapy-related caries remain unclear. This study analyzed risk factors, disease predictors, and protective factors for radiotherapy-related caries in nasopharyngeal carcinoma. This prospective study included 138 nasopharyngeal carcinoma patients receiving radical radiotherapy at our hospital during June 2012–December 2016 and were followed up for dental caries. Patients’ clinical data on radiotherapy were collected, dynamic monitoring was performed to assess changes in oral pH values, and a questionnaire survey was administered to collect patients’ lifestyle habits. Time-dependent cox regression trees, event-free Kaplan–Meier curve, Mann–Whitely U test were used to analysis the results. The median follow-up time was 30 (12–60) months. Radiotherapy-related caries occurred in 28 cases (20.3%). Univariate analyses showed that radiotherapy-related caries was associated with patient’s age, oral saliva pH value, green tea consumption, and radiation dose to sublingual glands, but not with the radiation dose to the parotid and submandibular glands. Multivariate analysis showed that oral saliva pH value [hazard ratio (HR) = 0.390, 95% confidence interval = 0.204–0.746] was an independent prognostic factor for radiotherapy-related caries. Patients with oral saliva pH values ≤ 5.3 in the 9th month after radiotherapy represented a significantly higher risks for radiotherapy-related caries (p < 0.001). Green tea consumption was associated with the occurrence of radiotherapy-related caries, and oral saliva pH values could predict the occurrence of radiotherapy-related caries. Limiting radiation doses to sublingual glands can reduce the occurrence of radiotherapy-related caries.


2021 ◽  
Vol 317 ◽  
pp. 447-453
Author(s):  
Noor Hidayah Aniza Zakaria ◽  
Nafisah Osman

NiO nanoparticle was synthesized by a sol-gel method with three different pH values namely pH=1, 7 and 11, and then calcined at temperature of 450 ᵒC. The influence of different pH values on the physical properties of NiO nanoparticles were investigated by a particle size analyzer (PSA), field emission scanning electron microscope (FESEM) and X-ray diffractometer (XRD). Structural analysis confirmed that a cubic structure of NiO nanoparticle was obtained without any secondary phase for NiO powders prepared with pH=1, while the peak of secondary phase (Ni) appeared for NiO powders prepared with pH= 7 and 11. Morphological observation showed that the NiO nanoparticles prepared with pH=7 and 11 tend to form more agglomerates compared to one prepared with pH=1. The average diameter of NiO nanoparticles with pH 1, 7 and 11 were approximately in the range of 19-26 nm, 21-28 nm, and 24-30 nm, respectively. NiO powder that was synthesized with pH=1 was further used to prepare composite anode of NiO Nps-BaCe0.54Zr0.36Y0.1O2.95 (BCZY) powder. Unfortunately a composite of NiO Nps-BaCeO3-BaZrO3 was obtained instead of BCZY and governed by agglomerates with size in the range of 70-300 nm.


2013 ◽  
Vol 42 (5) ◽  
pp. 330-335 ◽  
Author(s):  
Milton Carlos Kuga ◽  
Gisele Faria ◽  
Paulo Henrique Weckwerth ◽  
Marco Antonio Hungaro Duarte ◽  
Edson Alves De Campos ◽  
...  

OBJECTIVE: This study evaluated, in several analysis periods, pH and calcium release and antibacterial activity provided by MTA Fillapex sealer compared to Sealapex and AH Plus sealers. MATERIAL AND METHOD: Polyethylene tubes were filled with a sealer and immersed in distilled water. After 24 hours, 14 and 28 days, pH and calcium release by endodontic sealers were evaluated directly in water which the tubes were stored. Sealers antibacterial activity was evaluated against Enterococcus faecalis and Staphylococcus aureus by means of agar diffusion test. All data were submitted to ANOVA and Tukey tests (α=0.05). RESULT: In all periods evaluated, Sealapex had the highest pH value (p<0.05) in comparison to other sealers and MTA Fillapex provided higher pH values than AH Plus (p<0.05). In 14-days period, MTA Fillapex had greater calcium release value than Sealapex (p<0.05). In 28-days period, Sealapex provided higher calcium release than MTA Fillapex (p<0.05). In all periods, AH Plus provided lower calcium release than other sealers (p<0.05). In relation to E. faecalis, there were no differences among the sealers, in relation to antibacterial activity (p>0.05). In relation to S. aureus, Sealapex presented better antibacterial effectiveness than the MTA Fillapex and AH Plus (p<0.05), which were similar each other (p>0.05). CONCLUSION: In final evaluation period, pH values and calcium release provided by MTA Fillapex were lower than provided by Sealapex and higher than provided by AH Plus. The MTA Fillapex antimicrobial action was similar to other endodontic sealers.


1970 ◽  
Vol 33 (11) ◽  
pp. 516-520 ◽  
Author(s):  
T. E. Minor ◽  
E. H. Marth

The effect of gradually reducing the pH of pasteurized milk with acetic, citric, hydrochloric, lactic, and phosphoric acids over periods of 4, 8, and 12 hr on growth of Staphylococcus aureus 100 in this substrate was determined. In addition, 1: 1 mixtures of lactic acid and each of the other acids, and of acetic and citric acids were evaluated for their effect on growth of this organism. To achieve a 90% reduction in growth over a 12 hr period, a final pH value of 5.2 was required for acetic, 4.9 for lactic, 4.7 for phosphoric and citric, and 4.6 for hydrochloric acid. A 99% reduction during a 12 hr period was obtained with a final pH value of 5.0 for acetic, 4.6 for lactic, 4.5 for citric, 4.1 for phosphoric, and 4.0 for hydrochloric acid. A pH value of 3.3 was required for a 99.9% reduction with hydrochloric acid, whereas the same effect was produced at a pH value of 4.9 with acetic acid. Correspondingly lower pH values were required to inhibit growth within 8 and 4 hr periods. Mixtures of acids adjusted to pH values at the borderline for growth (12 hr period) exhibited neither synergistic nor antagonistic effects between two acids.


Sign in / Sign up

Export Citation Format

Share Document