Screening Test of Phosphoric Acid-BTA Slurries for Copper ECMP Based on Static Inhibition Efficiency

2011 ◽  
Vol 239-242 ◽  
pp. 920-923 ◽  
Author(s):  
Wen Jie Zhai ◽  
Yang Zhan Yang

An ECMP slurry screening protocol is proposed based on inhibition efficiency of inhibitor in copper static corrosion test, aiming at enhancing the planarization efficiency of copper ECMP slurries. The elctrochemical properties of copper in electrolytes including H3PO4 and BTA with different concentrations are studied basing on Linear Sweep Voltammetry (LSV) and chronoamperometry under static corrosion states. According to analysis of the anodic current, material removal rate (MRR) and inhibition efficiency of BTA, an electrolyte formula of 30 wt% H3PO4+0.01M BTA is sort out and the anodic potential on copper should be set below 0.5 V.

2011 ◽  
Vol 314-316 ◽  
pp. 2565-2568 ◽  
Author(s):  
Wen Jie Zhai ◽  
Yang Zhan Yang

A mixed phosphate slurry is screened out first in terms of inhibition efficiency of the inhibitor by electrochemical static-corrosion test of copper for different concentrations of H3PO4 and BTA. Then ECMP experiments are carried out on a modified pin-on-disk type tribo-electrochemical tester for the candidate slurry under the potential range of applied voltage, with the anodic current and friction coefficient recorded and MRR measured. It is found that copper ECMP can achieve good surface quality with a high MRR under 0.75 V anodic potential in slurry of 10%KH2PO4 + 5%H3PO4+0.03M BTA. Down force is found to have little effect on MRR in the mixed slurry, this pressure-independent characteristics may help reduce the pattern effect during patterned wafer polishing.


2013 ◽  
Vol 712-715 ◽  
pp. 321-324
Author(s):  
Dong Liang Lu ◽  
Dang Jun Zhang ◽  
Chun Yan Duan ◽  
Tao Lin

The aim of this study is to evaluate the effect of boric acid as an additive for gelled electrolytes. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and an equivalent circuit analysis were employed to study the electrochemical performance of the gelled electrolyte with the addition of varying amounts of boric acid. Scanning electron microscope (SEM) was employed to observe the grid corrosion in corrosion test. For moderate contents of boric acid, the electrode capacity improved, as well as the oxygen evolution profermance. However, the adverse effects of boric acid were found to include increased electrical resistance, decreased hydrogen evolution overpotential and promote the corrosion of the grid. The experimental results indicates that the optimum content was 0.4wt.%.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


1983 ◽  
Vol 48 (2) ◽  
pp. 477-483 ◽  
Author(s):  
Jan Lasovský ◽  
František Grambal

The electrooxidation of luminol in alkaline solutions in the presence of cetyltrimethylammonium bromide (I) was studied by linear sweep voltammetry on fixed and vibrating platinum electrodes. The presence of I in low concentrations (below the critical micellar concentration) brings about aggregation of the luminol, which is manifested by an increase in the anodic peak height and its shift towards lower potentials. In micellar solutions the peak height decreases owing to the slower diffusion of the bulkier micelles, the shift to lower potentials being preserved. The light-voltage curves correspond with the voltammetric curves, exhibiting identical shifts of the peak potentials in dependence on the concentration of the surfactant.


Sign in / Sign up

Export Citation Format

Share Document