Effect of Heat Treatment on Microstructure and Mechanical Properties of 30MnSi Pre-Stressed Concrete Steel

2011 ◽  
Vol 250-253 ◽  
pp. 109-112
Author(s):  
Hong Bao Cui ◽  
Li Feng Zheng

In the present work, the effect of heat treatment parameters on microstructure and strength of the 30MnSi PC steel bars was investigated and analyzed systematically. The results show that the fine tempered martensite, thinning tempered troostite and tiny tempered sorbite can be obtained when quenching temperature reach 920°C and the temper temperature is 240°C, 430°C, 600°C, respectively. The relationship between heat treatment parameters and tensile strength was also obtained. Optimum strength can be obtained by quenching at 920-950 °C and tempering at 430 °C with constant heating time.

2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


2011 ◽  
Vol 197-198 ◽  
pp. 1125-1128 ◽  
Author(s):  
Jing Jiang Nie ◽  
Liang Meng ◽  
Xiu Rong Zhu ◽  
Yong Dong Xu ◽  
Yue Yi Wu ◽  
...  

The effect of the combined action of hot work and heat treatment on the microstructure and mechanical properties of a Mg-2Gd-Nd-0.4Zn-0.3Zr (wt. %) (E21) alloy was investigated. Results showed that the solution treatment time of the ingot played a great effect on the mechanical properties of the extruded alloy. With solution treating time of the ingot increasing, the tensile strength of the extruded alloy decreased gradually, but the elongation increased greatly. The best combination of strength and ductility was achieved for the extruded alloy after the ingot solution treated at 520°C for 3 h, extrusion at 400°C and aging at 200°C for 16 h, namely ultimate tensile strength = 331MPa and elongation = 7.1%.


2007 ◽  
Vol 561-565 ◽  
pp. 415-418 ◽  
Author(s):  
Zheng Dong Li ◽  
Guo Qing Zhang ◽  
Zhou Li ◽  
Wen Yong Xu ◽  
Rui Ping Yao ◽  
...  

Sound billets were produced at BIAM with a twin-scanning spray forming facility. Microstructure and mechanical properties of In718 alloy produced with this technology were examined. Both tensile strength and stress rupture properties are excellent with the rupture life even doubled after received a direct aging heat treatment.


2014 ◽  
Vol 1063 ◽  
pp. 65-68 ◽  
Author(s):  
Peng Zhang ◽  
Gang Wang ◽  
Chun Cheng Pan ◽  
Xiao Qi Ren

Microstructure and mechanical properties of different area of 22MnB5 hot stamping part were analysis by experiment. The results show that the maximum tensile strength reaches 1578MPa at bottom surface area, and the elongation is at the region of 8.5~12 with die cooling area, and the area of bottom surface has higher tensile strength than that of side wall area. Martensite is formed with die cooling, and tempered martensite and undissolved ferrites were found at side wall area. The microstructure of area with air cooling is composed of ferrite and pearlite, and a small amount of martensite.


2016 ◽  
Vol 850 ◽  
pp. 762-767
Author(s):  
Shun Cheng Wang ◽  
Dong Fu Song ◽  
Jing Xu ◽  
Kai Hong Zheng

In the present investigation the casting-forging integrated technology was adopted to manufacture Al-1.1Mg-0.6Si-0.4Cu alloy automobile brake calipers. The effect of forging pressure on the microstructure and mechanical properties of Al-1.1Mg-0.6Si-0.4Cu alloy calipers were studied. The results showed that the shrinkage porosities and cracks in the Al-1.1Mg-0.6Si-0.4Cu alloy calipers could be removed by the forging process. The ultimate tensile strength and elongation of Al-1.1Mg-0.6Si-0.4Cu alloy calipers increased with the increase of forging pressure. When the forging pressure was 120 MPa, the ultimate tensile strength and elongation of Al-1.1Mg-0.6Si-0.4Cu alloy calipers with T6 heat treatment were 365.3 MPa and 11.5%, which were improved by 22.8% and 38.2%, respectively compared with that of Al-1.1Mg-0.6Si-0.4Cu alloy calipers without forging. The tensile fracture images revealed that the fracture modes of Al-1.1Mg-0.6Si-0.4Cu alloy calipers were more ductile at higher forging pressure.


2014 ◽  
Vol 971-973 ◽  
pp. 240-243
Author(s):  
Tao Zhang ◽  
Hua Xing Hou ◽  
Zhao Tan

The effect of heat treatment on the microstructure and mechanical properties of High Strength steel plate Q960E for construction machinery was investigated. The result shows the quenching temperature have obvious effects on the mechanical properties, DQ can improve the toughness and the enchance tempering resistance, precipitations become more and bigger with the rise of the tempering temperature.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1189 ◽  
Author(s):  
Yasir Mahmood ◽  
Kaida Dai ◽  
Pengwan Chen ◽  
Qiang Zhou ◽  
Ashfaq Ahmad Bhatti ◽  
...  

The aim of this paper is to study the microstructure and mechanical properties of the Ti6Al4V/Al-1060 plate by explosive welding before and after heat treatment. The welded interface is smooth and straight without any jet trapping. The disturbances near the interface, circular and random pores of Al-1060, and beta phase grains of Ti6Al4V have been observed by Scanning electron microscopy (SEM). Heat treatment reduces pores significantly and generates a titanium-island-like morphology. Energy dispersive spectroscopy (EDS) analysis results show that the maximum portion of the interfacial zone existed in the aluminium side, which is composed of three intermetallic phases: TiAl, TiAl2 and TiAl3. Heat treatment resulted in the enlargement of the interfacial zone and conversion of intermentallic phases. Tensile test, shear test, bending test and hardness test were performed to examine the mechanical properties including welding joint qualities. The results of mechanical tests show that the tensile strength and welding joint strength of the interfacial region are larger than one of its constituent material (Al-1060), the microhardness near the interface is maximum. Besides, tensile strength, shear strength and microhardness of heat treated samples are smaller than unheat treated. Smooth particle hydrodynamic (SPH) method is used to simulate the transient behaviour of both materials at the interface. Transient pressure, plastic deformation and temperature on the flyer and base side during the welding process were obtained and analyzed. Furthermore, the numerical simulation identified that almost straight bonding structure is formed on the interface, which is in agreement with experimental observation.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2126 ◽  
Author(s):  
Shikai Zhang ◽  
Pan Ma ◽  
Yandong Jia ◽  
Zhishui Yu ◽  
Rathinavelu Sokkalingam ◽  
...  

In this study, a combination of Al–12Si and Al–20Si (Al–(12-20)Si) alloys was fabricated by selective laser melting (SLM) as a result of increased component requirements such as geometrical complexity and high dimensional accuracy. The microstructure and mechanical properties of the SLM Al–(12-20)Si in as-produced as well as in heat-treated conditions were investigated. The Al–(12-20)Si interface was in the as-built condition and it gradually became blurry until it disappeared after heat treatment at 673 K for 6 h. This Al–(12-20)Si bi-material displayed excellent mechanical properties. The hardness of the Al–20Si alloy side was significantly higher than that of the Al–12Si alloy side and the disparity between both sides gradually decreased and tended to be consistent after heat treatment at 673 K for 6 h. The tensile strength and elongation of the Al–(12-20Si) bi-material lies in between the Al–12Si and Al–20Si alloys and fracture occurs in the Al–20Si side. The present results provide new insights into the fabrication of bi-materials using SLM.


Sign in / Sign up

Export Citation Format

Share Document