Mechanism Analysis and Experimental Research on the Interception of Nitrogen and Phosphorus Pollutants by Gullies in Northern China

2011 ◽  
Vol 250-253 ◽  
pp. 3392-3396
Author(s):  
Yu Jia Song ◽  
Hui Qing Liu

The discharge of urban sewage and agricultural non-point source pollutants is the main reason causing eutrophication in gullies in most cities of northern China. Based on a careful analysis on the ecological structure and ecological characteristics of a gully, this article preliminarily studies the interception and degradation mechanisms of nitrogen pollutants by the gully. Meanwhile, to take gullies in Changchun as the object of the study, this article carries out an experiment on the interception effect of nitrogen pollutants by gullies. This experiment respectively establishes a control section in the upper and lower reaches of a gully, and takes water samples four times in each section from May to August to determine total nitrogen, total phosphorus, nitrate nitrogen, ammonia nitrogen and salinity. The result shows: the gully plays some role in the interception of pollutants; total phosphorus accounts for the largest interception in pollutants in the experimented gully section, with the relative interception rate of 27.46%, followed by ammonia nitrogen, with the interception rate of 21.80%, which is the result of the combined effects of aquatic plants, microorganisms and sediment in the gully.

2017 ◽  
Vol 76 (2) ◽  
pp. 396-412 ◽  
Author(s):  
Su-jin Lu ◽  
Jian-huan Si ◽  
Chuan-ying Hou ◽  
Yu-si Li ◽  
Meng-meng Wang ◽  
...  

To provide a theoretical basis for alpine source lake protection, ten samples were taken from each lake annually from 2012 to 2015. Each year, the various species of nitrogen and phosphorus nutrients were measured. The average contents of nitrate nitrogen, ammonia nitrogen, nitrite nitrogen, total phosphorus, and total nitrogen in the four lakes are 0.195–0.0 mg/L, 0.038–0.143 mg/L, 0.004–0.168 mg/L, 0.006–0.740 mg/L, and 0.050–0.547 mg/L, respectively. The total phosphorus contents in Eling Lake, Longbao Lake and Sea Star were higher than Class I water quality standards, and the total nitrogen contents in Eling Lake, Sea Star and Zhaling Lake were higher than Class I water quality standards as well. The concentration contour maps of the nitrate nitrogen, ammonia nitrogen, nitrite nitrogen, total phosphorus and total nitrogen showed that the indicators of the four lakes in the east, the west, and the center of the lake did not have the same trend. From 2012 to 2015, each of the measured nutrients showed a rising trend year by year. The four lakes are polluted by both endogenous and exogenous pollution, and it is necessary to limit the exogenous pollution and protect the alpine lakes immediately.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1467 ◽  
Author(s):  
Tao ◽  
Wang ◽  
Guan ◽  
Xu ◽  
Chen ◽  
...  

Agricultural drainage plays an effective role in preventing waterlogging and salinity disasters and also is the main transport pathway for agricultural non-point source pollutants into rivers and lakes. Hence, the water quality of agricultural drainage should be a point of focus. In this paper, nitrogen and phosphorus loss under improved subsurface drainage with different filter materials (gravel, layered sand-gravel, mixed sand-gravel, straw) were studied by a three-year field experiment (2016–2018) compared with the conventional subsurface drainage. The pH values, total nitrogen, ammonia nitrogen, nitrate nitrogen, total phosphorus and soluble reactive phosphate were considered. The results showed that the nitrogen and phosphorus concentrations of drain outflow under improved subsurface drainage with gravel filter were larger than that with layered sand-gravel filter and mixed sand-gravel filter. The improved subsurface drainages with layered sand-gravel filter and mixed sand-gravel filter had an effect on reducing the ammonia nitrogen, total phosphorus and soluble reactive phosphate concentrations of the outflow. Meanwhile, the characteristics of nitrogen and phosphorus loss under the improved subsurface drainage with straw filter were different from that with layered sand-gravel filter and mixed sand-gravel filter. For the improved subsurface drainage with layered sand-gravel filter outflow, the ammonia nitrogen, total phosphorus, and soluble reactive phosphate concentrations were about 13%–78%, 38%–63%, 40%–68% less, and total nitrogen, nitrate nitrogen concentrations were 24%–80%,18%–96% more than that under conventional subsurface drainage. Meanwhile, for the improved subsurface drainage with straw filter outflow, compared with conventional subsurface drainage outflow, the percentage changes of the total nitrogen, nitrate nitrogen, ammonia nitrogen, total phosphorus and the soluble reactive phosphate concentrations were about −76%–62%, −77%–78%, −152%–−274%, −103%–−400% and −221%–−291%, respectively. Additionally, in the outflow of all subsurface drainage patterns, there were much higher total nitrogen and nitrate nitrogen concentrations which should be focused on and the agricultural water management should be adopted.


2019 ◽  
Vol 28 (2) ◽  
pp. 257-267
Author(s):  
Marek Kalenik

The model investigations of sewage purification were carried out in a medium sand bed with an assisting hydro-anthracite layer with thickness of 0.10 and 0.20 m. It has been observed that the effectiveness of sewage purification related to basic qualitative parameters (total suspended solids – TSS, BOD5, COD, total nitrogen, total phosphorus) is in accordance with the Polish standards on sewage disposal into grounds and surface water. It has been stated that the medium sand soil bed with the 0.20-meter thick assisting hydro-anthracite layer shows higher effectiveness of sewage purification than the 0.10 m thick assisting layer. This application in the medium sand soil bed increased the removal efficiency regarding TSS by 3.1%, total nitrogen by 29.4%, ammonia nitrogen by 1.2% and total phosphorus by 23.0%, and reduction efficiency regarding BOD5 by 1.5% and COD by 11.3% with relation to the 0.10-meter thick assisting hydro-anthracite layer (all percentages – in average). The investigations confirm that the hydro-anthracite with the granulation of 1.8–2.5 mm can be used to assist in removal of nitrogen and phosphorus compounds from sewages


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2989
Author(s):  
Katarzyna Dębska ◽  
Beata Rutkowska ◽  
Wiesław Szulc ◽  
Dariusz Gozdowski

Surface waters are very important for society, as they are a source of potable water, as well a water supply for agricultural, industrial and recreational purposes. This paper presents changes in the quality of the water in the Utrata River, along its entire length, as a function of the catchment area’s land use. Water-quality measurements were carried out once a month for a total period of one year (April 2019–March 2020) at 24 measurement points. The concentrations of the following compounds were measured: total phosphorus, ammonia nitrogen and nitrate nitrogen, dissolved oxygen, and chemical oxygen demand. The results were compared with the limit values specified in the Regulation of the Minister of Maritime Economy and Inland Navigation. In order to determine the impact of land use on water quality in the Utrata River, principal component analyses (PCA) were conducted. The research demonstrated a considerably negative impact of agricultural land use and the presence of urban areas on the water quality of the Utrata River, with elevated concentrations of total phosphorus, ammonia nitrogen, nitrate nitrogen and COD, and decreasing concentrations of dissolved oxygen. The presented results point to the need for effective strategies to mitigate the adverse impact of agriculture and urbanisation on the environment and surface waters.


2013 ◽  
Vol 295-298 ◽  
pp. 1215-1221
Author(s):  
Rong Wang ◽  
Ai Ping Tang

The high sludge production has becoming one of the main drawbacks in the conventional activated sludge process. The ozone oxidation is considered as one of the most effective techniques owing to its high efficiency and non-secondary pollution. In this paper, the solubilization rules of nitrogen and phosphorus with directing injection ozone in a static unit were studied, then, the long-term removal rates of ammonia nitrogen and total phosphorus in SBR system of directing injection ozone were studied with ozone dosage from 0.01~0.04gO3/gSS. The results of static experiments showed that the nitrate concentration increased quickly from 3.52mg/L to 13.83mg/L, the concentration of organic nitrogen and ammonia increased slightly, whereas, the nitrite concentration decreased gradually at the ozone dosage of 0~0.15gO3/gSS, most of the nitrogen released from the ozonated sludge were escaped from the supernate in the form of nitrogen and ammonia. The result of long-time experiment in SBR system showed that the removal rates of ammonia and total phosphorus was 91.1%, 80.5%, respectively.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 900 ◽  
Author(s):  
Lina Chen ◽  
Longxi Han ◽  
Hong Ling ◽  
Junfeng Wu ◽  
Junyi Tan ◽  
...  

Based on the principles of fairness and feasibility, a nonlinear optimization allocation method for pollutants was developed based on controlled section water quality standards, considering the synergetic influence of point and surface sources. The maximum allowable emission of pollutants from point and surface sources were taken as the objective function. The water quality attainment rate of controlled sections, the control requirements of pollution sources, and technical parameters of pollution control engineering were taken as constraints. A nonlinear optimization allocation model was established, and a genetic algorithm was used to solve the problem. As an example, the model was applied to a certain area in the Taihu Lake basin, southern Jiangsu province, China. The analysis results showed that the annual number of days for ammonia-nitrogen and total phosphorus meeting the standard were 334 and 332 days, respectively, under maximum allowable emissions for each pollutant, and the water quality compliance rates of the control section were 91.5% and 91%, respectively. The ammonia-nitrogen and total phosphorus concentrations in the controlled section achieved related water quality compliance rate targets of 90%. These all met the water quality compliance rate requirements of the control section. The results indicate that this method reflects the feasibility of optimizing the total allocation results systematically and intuitively, overcomes the insufficiency in the feasibility of the optimized allocation method, and provides effective and reliable technical support for control and management of the total pollutant amount based on water quality improvement.


2012 ◽  
Vol 518-523 ◽  
pp. 549-553 ◽  
Author(s):  
Qun Su ◽  
Rong Lian Xing ◽  
Hui Yi Wang

The effects of eutrophication on the absorption kinetic parameters of nitrogen and phosphorus are investigated. The results show that the kinetic characteristics of phosphate, nitrate- nitrogen, ammonia-nitrogen and nitrite-nitrogen of Nitzschia sp. are all generally in accord with the function of Michaelis-Menten equation. The Km of them are 1.81 mg/L, 1.75 mg/L, 0.20 mg/L and 4.53 mg/L, respectively. The maximum uptake rates of nitrate-nitrogen and ammonia- nitrogen are higher than that of nitrite-nitrogen, which indicates that nitrate-nitrogen and ammonia- nitrogen can be uptaken more preferential than that of nitrite-nitrogen. In conclusion, Nitzschia sp. has a fast utilized rate of ammonia-nitrogen, nitrate-nitrogen and phosphorus. This indicates that Nitzschia sp. has a good effect on water quality and it could be applied potentially to purify waste water.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3555
Author(s):  
Ke Zhao ◽  
Hang Fu ◽  
Qian Wang ◽  
Hai Lu

In this paper, the characteristics of water pollution in Yitong River were analyzed by the comprehensive pollution index method. Combined with the pore water concentration gradient method and Fick’s first law, the release characteristics of nutrients at the sediment–water interface of Yitong River (Jilin Province, China) were studied. The results showed that the distribution trend of nitrogen and phosphorus content in the overlying and interstitial water of the Yitong River was the same, and the highest values appeared at the S3 and S5 points in the urban section. The water quality was mainly affected by nitrogen pollutants in domestic sewage. The evaluation results of the water quality comprehensive pollution index showed that the pollution degree of interstitial water in urban areas was much higher than that of the overlying water, and the endogenous nitrogen and phosphorus pollutants had the risk of diffusion to the overlying water. The exchange flux analysis of ammonia nitrogen (NH4+-N), total dissolved nitrogen (TDN), and total dissolved phosphorus (TDP) in water showed that the diffusion flux of NH4+-N ranged from 0.03 to 6.52 mg·(m2·d)−1, and the sediment was the “source” of ammonia nitrogen pollutants. The range of TDN diffusion flux was −1.57 to 11.6 mg·(m2·d) −1, and the difference between points was large. The sediment was both the “source” and “sink” of nitrogen pollutants. The range of TDP diffusion flux was −0.05 to 0.22 mg·(m2·d) −1. Except for point S8, the TDP diffused from sediment into the water body. Among all the sampling points, the diffusion fluxes of NH4+-N, TDN, and TDP at the S3 point were the largest, the release rate of endogenous pollutants was the most rapid, and the pollution to the water quality was the most serious. The results are of great significance to the exchange flux of nutrients at the sediment–water interface of rivers and the prevention and control of water eutrophication. It also provides a reference for the study of nutrient exchange flux at the sediment–water interface of rivers and other surface water bodies worldwide.


2021 ◽  
Author(s):  
Xudong Zheng ◽  
Wen Sun ◽  
Ning Wei ◽  
Tingting Bian ◽  
Yi Zhang ◽  
...  

Abstract Phosphorus and nitrogen flow to water leads to eutrophication and depletion of reserves. Bionic-inspired tannin modification is proposed for preparing a tannin-modified La-Zn(4,4'-dipy)(OAc)2/bacterial cellulose composite membrane for simultaneous adsorption of total phosphorus and ammonia nitrogen in water. Its physical and chemical properties were characterized by XRD, SEM, FT-IR, TGA and other characterization. La-Zn(4,4'-dipy)(OAc)2 nanomaterial achieved effective adhesion on the tannin-modified bacterial cellulose membrane. Adsorption experiments showed that the composite membrane can both adsorb total phosphorus and ammonia nitrogen, and adsorption capacity of ammonia nitrogen is better than that of total phosphorus. The maximum adsorption capacities of ammonia nitrogen and total phosphorus are 482.35 mg/g and 374.71 mg/g. In the binary solution, the adsorption capacity of the composite membrane to ammonia nitrogen and total phosphorus decreased, but the adsorption capacity to phosphorus decreased slightly. Results of adsorption experiments showed that the adsorption process of nitrogen and phosphorus by the composite membrane belongs to single-layer adsorption, and the calculation results of the kinetic equation are in accordance with the quasi-second-order, and the adsorption equilibrium of the composite membrane was reached within 360 min. In short, the composite membrane has a better adsorption and separation effect both on ammonia nitrogen and total phosphorus.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 900
Author(s):  
Chao Wang ◽  
Hongyan Han ◽  
Lin Sun ◽  
Na Na ◽  
Haiwen Xu ◽  
...  

Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled at 0, 5, 14, 45 and 90 days after ensiling. Bacterial community and fermentation quality were analysed. During fermentation, the pH was reduced to below 4.0, lactic acid increased to above 73 g/kg DM (p < 0.05) and Lactobacillus dominated the bacterial community and had a reducing abundance after 14 days. In the final silages, butyric acid was not detected, and the contents of acetic acid and ammonia nitrogen were below 35 g/kg DM and 100 g/kg total nitrogen, respectively. Compared with silages from Heilongjiang and Inner Mongolia, silages from Shanxi contained less Lactobacillus and more Leuconostoc (p < 0.05), and had a separating bacterial community from 14 to 90 days. Lactobacillus was negatively correlated with pH in all the silages (p < 0.05), and positively correlated with lactic and acetic acid in silages from Heilongjiang and Inner Mongolia (p < 0.05). The results show that the final silages had satisfactory fermentation quality. During the ensilage process, silages from Heilongjiang and Inner Mongolia had similar bacterial-succession patterns; the activity of Lactobacillus formed and maintained good fermentation quality in whole-plant corn silage.


Sign in / Sign up

Export Citation Format

Share Document