Illumination Control System and Drive Design of Large Power LED Lights

2011 ◽  
Vol 335-336 ◽  
pp. 40-43
Author(s):  
Chun Hua Li ◽  
Li Zhao ◽  
Shan Hu ◽  
Li Yun Shen

In view of the LED lights' high efficiency property, compared to the common driving circuit of large power LED, ARM microprocessor and Buck-Boost power converter are used to design the high efficiency LED lights' driving circuit. At the same time, PID adjustment mode is applied to realize Illumination control of the high efficiency LED lights, which improves the adjustable speed of the system and reduces the power loss. According the principle of design, experiment platform is rebuilt. Tests to the different kinds of lamps indicate that the driving is stable and realizes the Illumination setting and automatic Illumination adjustment.

2013 ◽  
Vol 311 ◽  
pp. 238-242
Author(s):  
Yong Nong Chang ◽  
Hung Liang Cheng ◽  
Chih Ming Kuo

In this paper, a dimmable LED lighting driving circuit with high efficiency for DC storage power supply is proposed. In this research, Class-E resonant converter is principal circuit structure and possesses superior efficiency in the power converter. LED lighting set accompanied with multiple transformers in cascade are employed, which can improve current uniform problem and increase operating reliability. Furthermore, integral cycle switching technique will be utilized to implement the dimmer design, integral cycle switching control dimmer possesses the advantage of zero-current-switching (ZCS) and can effectively promote the operating efficiency


Author(s):  
Lei Wang ◽  
Xudong Zhang ◽  
Dr. Jing Liu ◽  
Yixin Zhou

Abstract Liquid metal owns the highest thermal conductivity among all the currently available fluid materials. This property enables it to be a powerful coolant for the thermal management of large power device or high flux chip. In this paper, a high-efficiency heat dissipation system based on the electromagnetic driven rotational flow of liquid metal was demonstrated. The velocity distribution of the liquid metal was theoretically analyzed and numerically simulated. The results showed that the velocity was distributed unevenly along longitudinal section and the maximum velocity appears near the anode. On the temperature distribution profile of the heat dissipation system, the temperature on the electric heater side was much higher than the other regions and the role of the rotated liquid metal was to homogenize the temperature of the system. In addition, the thermal resistance model of the experimental device was established, and several relationships such as thermal resistance-power curve were experimentally measured. The heating power could be determined from the temperature-power relationship graph once the maximum control temperature was given. The heat dissipation method introduced in the paper provides a novel way for fabricating compact chip cooling system.


2013 ◽  
Vol 274 ◽  
pp. 290-293
Author(s):  
Bao Gang Wang ◽  
Qi Hui Song ◽  
Guang Chi Xu

A wind-driven feeding mechanism of high efficiency is designed according to the TRIZ theory and its mechanical structure innovative design based on the principle of energy conversion. It aims at delivering of small granular, cylindrical, flakes and other materials in machinery, pharmaceuticals, electronics and other industries by transmission mechanism such as the typical gear mechanism and linkage mechanism. The prototype is produced combined with the specific parameters of the common materials. The modular innovative design is adopted, including the transmission module, driver module and material feeding module. By the inspection of the actual operation, each design module of the produced prototype is stable and reliable. At the same time the effect of material transportation is good.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000144-000151
Author(s):  
Siddharth Potbhare ◽  
Akin Akturk ◽  
Neil Goldsman ◽  
James M. McGarrity ◽  
Anant Agarwal

Silicon Carbide (SiC) is a promising new material for high power high temperature electronics applications. SiC Schottky diodes are already finding wide acceptance in designing high efficiency power electronic systems. We present TCAD and Verilog-A based modeling of SiC DMOSFET, and the design and analysis of a medium power DC-DC converter designed using SiC power DMOSFETs and SiC Schottky diodes. The system is designed as a 300W boost converter with a 12V input and 24V/36V outputs. The SiC power converter is compared to another designed with commercially available Silicon power devices to evaluate power dissipation in the DMOSFETs, transient response of the system and its conversion efficiency. SiC DMOSFETs are characterized at high temperature by developing temperature dependent TCAD and Verilog-A models for the device. Detailed TCAD modeling allows probing inside the device for understanding the physical processes of transport, whereas Verilog-A modeling allows us to define the complex relationship of interface traps and surface physics that is typical to SiC DMOSFETs in a compact analytical format that is suitable for inclusion in commercially available circuit simulators.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2191 ◽  
Author(s):  
Juyong Kim ◽  
Hongjoo Kim ◽  
Jintae Cho ◽  
Youngpyo Cho

This paper describes the design and field application of a high-efficiency single-phase AC/DC converter that is suitable for distribution lines. First, an appropriate AC/DC converter was designed in consideration of the environment of the application system. In order to ensure high efficiency and high reliability, we designed an optimum switching element and capacitor suitable for the converter, and the protection element of the AC/DC converter was designed based on these elements. The control function for the power converter suitable for an LVDC distribution system is proposed for highly reliable operation. The AC/DC converter was manufactured based on the design and its performance was verified during application in an actual low-voltage DC (LVDC) distribution grid through tests at the demonstration site. The application to a DC distribution system in an actual grid is very rare and it is expected that it will contribute to the expansion of LVDC distribution.


2020 ◽  
Vol 34 (07) ◽  
pp. 11580-11587
Author(s):  
Haojie Liu ◽  
Han Shen ◽  
Lichao Huang ◽  
Ming Lu ◽  
Tong Chen ◽  
...  

Traditional video compression technologies have been developed over decades in pursuit of higher coding efficiency. Efficient temporal information representation plays a key role in video coding. Thus, in this paper, we propose to exploit the temporal correlation using both first-order optical flow and second-order flow prediction. We suggest an one-stage learning approach to encapsulate flow as quantized features from consecutive frames which is then entropy coded with adaptive contexts conditioned on joint spatial-temporal priors to exploit second-order correlations. Joint priors are embedded in autoregressive spatial neighbors, co-located hyper elements and temporal neighbors using ConvLSTM recurrently. We evaluate our approach for the low-delay scenario with High-Efficiency Video Coding (H.265/HEVC), H.264/AVC and another learned video compression method, following the common test settings. Our work offers the state-of-the-art performance, with consistent gains across all popular test sequences.


2018 ◽  
Vol 245 ◽  
pp. 07008 ◽  
Author(s):  
Dario Barsi ◽  
Carlo Costa ◽  
Francesca Satta ◽  
Pietro Zunino ◽  
Vitaly Sergeev

The objective of energy production with low environmental impact will have, in the near future, high potential of development also for naval applications. The containment of pollutant emissions can be achieved by the combined use of an innovative mini gas-steam combined cycle with thermal energy cogeneration to feed the ship thermal utilities, in place of the current Diesel engine application, and liquefied natural gas as fuel (LNG). The present work is focused on the definition of the architecture of the plant, by selecting optimal distribution of pressure and temperature and repartition of power between Gas Turbine (GT), Steam Turbine (ST) and thermal utilities, as well as on the choice and sizing of the individual components. The main purpose is the definition of a compact, high efficiency, system. The proposed basic mini-cycle ranges from 2 MW to 10 MW electric power. Thanks to the combined heat and power cogeneration plant adopted, for an overall electrical efficiency of about 30%, a total return (thermal + electricity) of about 75% can be achieved. An example of plant providing large power, in a partially modular arrangement is also proposed.


2013 ◽  
Vol 336-338 ◽  
pp. 1161-1164
Author(s):  
Wen Hua Hu

This paper introduced a voltage follower type of supply hybridized by the switch filter unit with the linear unit, analyzed the principle of the composing, the topology of Switch Linearity Hybrid (SLH) power converter. Theory analyses, simulation and experimental results showed that the SLH power converter possess the character of high efficiency, low THD, the capacity suitable to varied kinds of loads (including non-linear load) and resisting load disturbance.


Sign in / Sign up

Export Citation Format

Share Document