Modeling and Design of High Temperature Silicon Carbide DMOSFET Based Medium Power DC-DC Converter

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000144-000151
Author(s):  
Siddharth Potbhare ◽  
Akin Akturk ◽  
Neil Goldsman ◽  
James M. McGarrity ◽  
Anant Agarwal

Silicon Carbide (SiC) is a promising new material for high power high temperature electronics applications. SiC Schottky diodes are already finding wide acceptance in designing high efficiency power electronic systems. We present TCAD and Verilog-A based modeling of SiC DMOSFET, and the design and analysis of a medium power DC-DC converter designed using SiC power DMOSFETs and SiC Schottky diodes. The system is designed as a 300W boost converter with a 12V input and 24V/36V outputs. The SiC power converter is compared to another designed with commercially available Silicon power devices to evaluate power dissipation in the DMOSFETs, transient response of the system and its conversion efficiency. SiC DMOSFETs are characterized at high temperature by developing temperature dependent TCAD and Verilog-A models for the device. Detailed TCAD modeling allows probing inside the device for understanding the physical processes of transport, whereas Verilog-A modeling allows us to define the complex relationship of interface traps and surface physics that is typical to SiC DMOSFETs in a compact analytical format that is suitable for inclusion in commercially available circuit simulators.

2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000046-000055
Author(s):  
John R. Fraley ◽  
Edgar Cilio ◽  
Bryon Western

In recent years, high temperature magnetic structures have been developed and used for inductors and transformers in high temperature applications ranging from power electronics to wireless telemetry systems. Research in the high temperature magnetics field has led to the development of more advanced magnetic structures that can enable diverse applications ranging from regulators to amplifiers, with far reaching implications for the high temperature electronics community. Current high temperature electronics have shown potential in lab and rig tests, but high temperature electronics systems suffer from the relatively limited lifetime of the semiconductor devices themselves. The advanced magnetics discussed in this paper can be designed to have extreme lifetime capabilities even at elevated temperatures, and as such can have an immediate impact on the implementation of true field deployable high temperature electronic systems. Aerospace, power generation, and automotive industries may especially benefit from this technology, as significant advances in health monitoring and active engine control will be enabled by these advanced magnetic structures. A theoretical understanding of these advanced magnetic structures is necessary for initial design and feasibility, while the true development and implementation of this technology depends on state of the art high temperature packaging approaches. By combining high temperature, grain-oriented magnetic materials along with high temperature packaging processes, APEI, Inc. has created advanced high temperature magnetic systems that indicate the technology described in this paper is a viable one, with applications across a wide range of high temperature electronics systems.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000228-000235
Author(s):  
Cyril Buttay ◽  
Remi Robutel ◽  
Christian Martin ◽  
Christophe Raynaud ◽  
Simeon Dampieni ◽  
...  

The power devices needed to build a high-temperature converter (inductors, capacitors and active devices) have been stored at 200°C for up to 1000 hrs. Their characteristics have been monitored. Capacitors and magnetic materials from various manufacturers and technologies are tested, as well as silicon-carbide diodes. It is shown that by carefully choosing the components, it is possible to build a reliable power converter operating at high temperature.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000592-000597
Author(s):  
B. McPherson ◽  
B. Passmore ◽  
P. Killeen ◽  
D. Martin ◽  
A. Barkley ◽  
...  

The demands for high-performance power electronics systems are rapidly surpassing the power density, efficiency, and reliability limitations defined by the intrinsic properties of silicon-based semiconductors. The advantages of post silicon materials, including Silicon Carbide (SiC) and Gallium Nitride (GaN), are numerous, including: high temperature operation, high voltage blocking capability, extremely fast switching, and superior energy efficiency. These advantages, however, are severely limited by conventional power packages, particularly at temperatures higher than 175°C and >100 kHz switching speeds. In this discussion, APEI, Inc. presents the design of a newly developed discrete package specifically intended for high performance, high current (>50A), rapid switching, and extended temperature (>250°C) wide band gap devices which are now readily available on the commercial market at voltages exceeding 1200V. Finite element analysis (FEA) results will be presented to illustrate the modeling process, design tradeoffs, and critical decisions fundamental to a high performance package design. A low profile design focuses on reducing parasitic impedances which hinder high speed switching. A notable increase in the switching speed and frequency reduces the size and volume of associated filtering components in a power converter. Operating at elevated temperatures reduces the requirements of the heat removal system, ultimately allowing for a substantial increase in the power density. Highlights of these packages include the flexibility to house a variety of device sizes and types, co-packaged antiparallel diodes, a terminal layout designed to allow rapid system configuration (for paralleling or creating half- and full-bridge topologies), and a novel wire bondless backside cooled construction for lateral GaN HEMT devices. Specific focus was placed on minimizing the cost of the materials and fabrication processes of the package components. The design of the package is discussed in detail. High temperature testing of a SiC assembly and electrical test results of a high frequency GaN based boost converter will be presented to demonstrate system level performance advantages.


2000 ◽  
Vol 123 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Tatsuki Ohji

This paper describes high-temperature reliability, particularly creep and creep rupture behavior of three engineering ceramics—silicon nitride, silicon carbide, and alumina-based silicon-carbide-particulate ceramics—which are considered the most potential candidates for the use of blades of high-efficiency ceramic gas turbine. The structural reliability of silicon nitride is very often limited due to the softening of glassy phases formed at grain boundaries. On the other hand, silicon carbide, which generally does not contain glassy phase at the grain boundaries, shows excellent creep resistance even at very high temperatures. Finally, it is shown that creep resistance of alumina can be markedly improved by dispersing nano-sized silicon carbide particles into the grain boundary.


2003 ◽  
Vol 764 ◽  
Author(s):  
C.-M. Zetterling ◽  
S.-M. Koo ◽  
E. Danielsson ◽  
W. Liu ◽  
S.-K. Lee ◽  
...  

AbstractSilicon carbide has been proposed as an excellent material for high-frequency, high-power and high-temperature electronics. High power and high frequency applications have been pursued for quite some time in SiC with a great deal of success in terms of demonstrated devices. However, self-heating problems due to the much higher power densities that result when ten times higher electrical fields are used inside the devices needs to be addressed. High-temperature electronics has not yet experienced as much attention and success, possibly because there is no immediate market. This paper will review some of the advances that have been made in high-temperature electronics using silicon carbide, starting from process technology, continuing with device design, and finishing with circuit examples. For process technology, one of the biggest obstacles is long-term stable contacts. Several device structures have been electrically characterized at high temperature (BJTs and FETs) and will be compared to surface temperature measurements and physical device simulation. Finally some proposed circuit topologies as well as novel solutions will be presented.


2012 ◽  
Vol 229-231 ◽  
pp. 1815-1818
Author(s):  
Yue Hong Wang ◽  
Yue Ping Qin ◽  
Jiu Ling Zhang ◽  
Jia Li Wen

For solution the complex and rapidly changing question of temperature field in mining goaf, the simulation on dynamic temperature field of parameters coupling is carried out under different working coditions based on high-efficiency finite volume method (FVM) and the moving characteristic of working face. The theory analysis, the laboratory experiment, the simulation of software and the example confirmation, above all methods are used in order to find the change of temperature field in goaf. The result is found that there has spontaneous combustion in goaf when the moving speed of working face is below 1.2m/d; besides that the temperature in goaf fall and the high-temperature region is extend to the deep of goaf. Another result is exist that there has the linear increase relationship of the intensity of leak air and the temperature in goaf, and the high-temperature region is extend to the deep of goaf contrary to the effect of the coal oxidation properties, which increases the risk of coal spontaneous combustion in goaf. Especially , all the data of temperature is visualization by picture of 3D, so the distribution map of temperature in goaf is visualized distinctly. The research results provide a theoretical basis for understanding the real situation and preventing spontaneous combustion in goaf.


2006 ◽  
Vol 83 (1) ◽  
pp. 150-154 ◽  
Author(s):  
K.V. Vassilevski ◽  
I.P. Nikitina ◽  
N.G. Wright ◽  
A.B. Horsfall ◽  
A.G. O’Neill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document