Effect of Phosphating Additives on Corrosion Resistance of Phosphate Coatings on AZ91D Magnesium Alloy

2011 ◽  
Vol 337 ◽  
pp. 112-115 ◽  
Author(s):  
Bi Lan Lin ◽  
Yu Ye Xu ◽  
En Cai Li

AZ91D magnesium alloys were immersed in different phosphating solutions with zinc nitrate and sodium fluoride additives to enhance the corrosion resistance. The devolution law of the Open Circuit Potential (OCP) of AZ91D alloys during phosphating was measured. The corrosion behaviors of AZ91D alloys in 3.5%NaCl solution were investigated using OCP and Tafel polarization methods, and the effect of phosphating additives was discussed. The results show that the changes of the OCP of AZ91D alloys with phosphating time in different phosphating solutions are different; the anodic and cathodic corrosion processes of AZ91D alloys are conspicuously inhibited with phosphate coatings; zinc nitrate and sodium fluoride are benefit to form phosphate coatings with better corrosion resistance. The corrosion potential of AZ91D alloy phosphated in solutions with both zinc nitrate and sodium fluoride is most positive.

2013 ◽  
Vol 14 (1) ◽  
pp. 103-108
Author(s):  
Jagadeesh Bhattarai ◽  
Susil Baral

The corrosion behavior of the sputter–deposited amorphous and nanocrystalline W–xTa (x = 8–77) alloys was studied in 0.5 M NaCl solution open to air at 25°C using corrosion tests and electrochemical measurements. Tungsten and tantalum metals act synergistically in enhancing the corrosion resistance of the sputter–deposited W–xTa alloys and hence additions of 23 at. % of tantalum or more to the sputter–deposited W–xTa alloys were found to be effective to achieve significantly high corrosion resistance properties of the alloys than those of alloy– constituting elements. In particular, the corrosion rate of the W–60Ta alloy showed the lowest corrosion rate (that is, 2.0×10-3). The open circuit potential of the alloys shifted noble (positive) direction with immersion time. Addition of tantalum metal in W–xTa alloys is effective for ennoblement of the open circuit corrosion potential of the tungsten metal in 0.5 M NaCl solution open to air at 25°C. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 103-108 DOI: http://dx.doi.org/10.3126/njst.v14i1.8929


2015 ◽  
Vol 61 (2) ◽  
pp. 117-120
Author(s):  
Costin Coman ◽  
◽  
Raluca Monica Comăneanu ◽  
Violeta Hâncu ◽  
Horia Mihail Barbu ◽  
...  

Objectives. In this study we evaluated corrosion resistance of three types of metal alloys (two NiCr and one CoCr). Methods. Samples (coded A, B, C) of circular shape, with dimensions 13 x 1.5 mm, sanded and polished, were introduced in Fusayama Meyer artificial saliva at pH 5.2 and 37 ± 0.5°C and tested in terms of corrosion resistance with a potentiostat/galvanostat (model 4000 PARSTAT, Princeton Applied Research). Results. Open circuit potential EOC [mV] ranged between 21.316 and 5.75. Corrosion potential Ecor [mV] was between -73.536 and -395.662, and the corrosion current density icor [A/cm2] was between 1.237 x 10-6 and 905.13 x 10-9. Conclusion. The best corrosion behavior in Fusayama Meyer artificial saliva at pH 5.2 and at a temperature of 37 ± 0.5°C is the alloy A, followed by the alloy C.


2013 ◽  
Vol 537 ◽  
pp. 67-70
Author(s):  
Feng Zhang ◽  
Chuan Bing Huang ◽  
Wei Liu ◽  
Kui Zhou ◽  
Wen Ting Zhang ◽  
...  

Ni/BN and NiCrAl/BN abradable sealing coatings used in turbo engines were prepared by plasma spray technology. The phases and the microstructures of the coatings were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Corrosion behaviors of these coatings were investigated with open-circuit potential (OCP) and salt spray corrosion test. The results showed that the NiCrAl/BN possess better corrosion resistance as compared with Ni/BN.


2015 ◽  
Vol 818 ◽  
pp. 125-128
Author(s):  
Petra Lacková ◽  
Mária Mihaliková ◽  
Jana Cervová ◽  
Anna Lišková

The paper presents the evaluation of corrosion resistance of aluminium alloy AlSi1MgMn. This alloy is used above all in any atmospheric conditions. The corrosion resistance of the alloy was evaluated by determining the open circuit potential (OCP) in solution SARS (this solution simulates the industrial atmosphere) after the 10 months of exposure time. The surface of aluminum alloys were analyzed by using energy dispersive X-ray analysis after the exposure time. The basic of corrosion characteristics (corrosion potential Ecorr, corrosion rate icorr and polarization resistance Rp) were determined by potenciodynamic measurements according to Tafel’s and Stern’s methods.


2019 ◽  
Vol 66 (6) ◽  
pp. 827-834
Author(s):  
Kong Weicheng ◽  
Shen Hui ◽  
Gao Jiaxu ◽  
Wu Jie ◽  
Lu Yuling

Purpose This study aims to investigate the electrochemical corrosion performance of high velocity oxygen fuel (HVOF) sprayed WC–12Co coating in 3.5 Wt.% NaCl solution, which provided a guiding significance on the corrosion resistance of H13 hot work mould steel. Design/methodology/approach A WC–12Co coating was fabricated on H13 hot work mould steel using a HVOF, and the electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution was measured using open circuit potential (OCP), potentiodynamic polarization curve (PPC) and electrochemical impedance spectroscopy (EIS) tests. Findings The OCP and PPC of WC–12Co coating positively shift than those of substrate, its corrosion tendency and corrosion rate decrease to enhance its corrosion resistance. The curvature radius of capacitance curve on the WC–12Co coating is larger than that on the substrate, and the impedance and polarization resistance of WC–12Co coating increase faster than those of substrate, which reduces the corrosion process. Originality/value The electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution is first measured using OCP, PPC and EIS tests, which improve the electrochemical corrosion resistance of H13 hot work mould steel.


2006 ◽  
Vol 11-12 ◽  
pp. 433-436 ◽  
Author(s):  
Xu Hui Zhao ◽  
Lian Peng Tian ◽  
Jing Mao Zhao ◽  
Yu Zuo

The electrochemical behaviors of anodized and sealed aluminum alloys in NaCl solution were studied by potentiodynamic polarization, the open-circuit-potential and EIS. The results show that anodic oxidization of aluminum increases its corrosion resistance greatly. Different sealing methods have different influences on corrosion behavior of the anodized alloys in NaCl solution; corrosion resistance increases in the order: no sealing < water sealing < dichromate sealing < nickel fluoride sealing. The modulus of the porous film sealed by dichromate solution increases with the immersion time in NaCl solution, which is similar to the self-sealing effect of unsealed anodic films.


2011 ◽  
Vol 117-119 ◽  
pp. 81-84
Author(s):  
Xi Ran Wang ◽  
Jing Wu ◽  
Xin Gang Hu

In this work, Fe-Zn coating on copper is obtained by electroless plating. The surface mor -phologies and composition of the coatings has been investigated using scanning electronic microscope (SEM) and energy dispersive spectroscopy(EDS). Corrosion behavior of Fe-Zn coating in3.5% NaCl solution is gaved a further insight. The impedance diagram indicates that corrosion resistance of coating is better. The open circuit potential of Fe-Zn coating is at about -1V. Self-corrosion potential of Fe-Zn coating in 3.5%NaCl solution shifts in the positive direction first and then shifts from -0.622V to -0.603V with increasing heat-treated temperature, while corresponding self-corrosion current decreases at first and then. increases Corrosion resistance of coating is the best when heat-treated temperature is 300°C.


1970 ◽  
Vol 25 ◽  
pp. 75-82
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

The synergistic effect of the simultaneous additions of tungsten and zirconium in thesputter-deposited amorphous or nanocrystalline Zr-(12-21)Cr-W alloys is studied in 0.5 MNaCl solution open to air at 25°C using corrosion tests and open circuit potentialmeasurements. Corrosion rates of the sputter-deposited Zr-(12-21)Cr-W alloys containing10-80 at % tungsten (that is, 0.95-1.85 x 10-2 mm.y-1) are more than one order of magnitudelower than that of the sputter-deposited tungsten and even lower than those of zirconium aswell as chromium in 0.5 M NaCl solution. The addition of 8-73 at % zirconium content inthe sputter-deposited binary W-(12-21)Cr alloys seems to be more effective to improve thecorrosion-resistant properties of the sputter-deposited ternary Zr-Cr-W alloys containing12-21 at % chromium in 0.5 M NaCl solution. The sputter-deposited Zr-(17-21)Cr-W alloyscontaining an adequate amounts of zirconium metal showed the more stable passivity andshowed higher corrosion resistance than those of alloy-constituting elements in 0.5 M NaClsolution open to air at 25°C.Keywords: Zr-(12-21)Cr-W alloys, sputter deposition, corrosion test, open circuit potential,0.5 M NaCl.DOI:  10.3126/jncs.v25i0.3305Journal of Nepal Chemical Society Volume 25, 2010 pp 75-82


2008 ◽  
Vol 38 ◽  
pp. 238-247
Author(s):  
A.D. Davydov ◽  
V.S. Shaldaev

The initiation and development of pitting corrosion of steel 20Cr13 in the NaCl solutions with various concentrations, temperatures, and pH values are studied under the potentiostatic conditions and at the free-corrosion potential. The pitting and repassivation potentials are determined using the method of cycling voltammetry. In spite of the fact that thus determined pitting potential is more positive than the corrosion potential (the open-circuit potential Eo.c.), the long-term experiments, which were performed at the free-corrosion potential, showed that pitting corrosion takes place without imposing a potential using an external power source. It is concluded that the probability of pitting corrosion of steel should be determined by comparing the corrosion potential (the open-circuit potential) with the repassivation potential Erp. Steel 20Cr13 is prone to the pitting corrosion, because Erp is more negative than Eo.c.. In the potentiostatic experiments, the variation of the depth and diameter of pits and their number with the time and the effect of temperature and electrode rotation on the pit propagation are studied. The results, which were obtained at the free-corrosion potential, are much less reproducible. In this case, in contrast to the potentiostatic conditions, the pit depth increased only slightly and the pit width increased to a larger extent. The effect of concentration, pH value, and temperature of NaCl solutions on the pit propagation is considered. It is concluded that the data on the development of pitting corrosion under the potentiostatic conditions can be hardly extended to the conditions of free corrosion potential.


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


Sign in / Sign up

Export Citation Format

Share Document