Preparation and Drug Release Properties of IBU-Loaded Mesoporous Calcium Silicate Hydrate (CSH) Spheres

2011 ◽  
Vol 393-395 ◽  
pp. 894-897
Author(s):  
Ya Dong ◽  
Hui Wen Yuan ◽  
Ya Ru Ni ◽  
Chun Hua Lu ◽  
Zhong Zi Xu

The novel kind flowerlike mesoporous spheres of calcium silicate hydrate (CaO•SiO2•H2O, CSH) have been synthesized by co-precipitation method on based with water/alcohol/calvital/ tetraethyl orthosilicate (TEOS) system. The synthesized CSH were applied as a carrier to study the loaded behaviors of ibuprofen(IBU),was used to investigate the drug loading behavior of the CSH for different times has been also discussed. The drug loading capacities(DLCs) of CSH loaded for 12h has reached 116.78wt.%. The structural, morphological and textural properties were investigated by SEM, FTIR, TG and BET. The results show that it would be a good candidate as drug carrier for bone repair.

2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


2010 ◽  
Vol 129-131 ◽  
pp. 1233-1237
Author(s):  
Hong Yan Xu ◽  
Mei Sheng Liang ◽  
Chun Hu Li

Using ferric nitrate, zinc nitrate, ammonia liquor and binder as main raw materials, five kinds of zinc ferrite sorbents were prepared by the co-precipitation method. The effects of the different binders on the structure and texture of zinc ferrite sorbents were investigated. The morphology, composite structure, pore properties, and mechanical strength were studied by using modern several physicochemical techniques such as powder X-ray diffraction (XRD), scanning electronic microscopy (SEM), strength tester and gas absorption meter. It is showed that spinel structure ZnFe2O4 is not affected by different binders,and its particle diameter is in micron leve1. The spinel structures are present in the sorbents that have been calcined at 750 0C.. The sorbent employed kaolinite as binder is the best one of the five types of sorbents for desulfurization, while the one employed diatomite is the worst.Different binders modify the textural properties, modifying consequently the sorbent reactivity. Furthermore, the reactivity and sulfur capacity of sorbents are increasing with an increase in the pore volume.


2017 ◽  
Vol 264 ◽  
pp. 74-78
Author(s):  
Ismaila Abdullahi ◽  
I. Zainol

The synthesis of a novelzinc doped chitosan-hydroxyapatite (chitosan-HAp) composite was done viain situ co-precipitation method. FTIR results showed that zinc is incorporated into the composite formed and is less crystalline compared to the pure hydroxyapatite (HAp). XRD results obtained showed that the incorporation of zinc into the lattice of the chitosan-HAp led to changes in the crystallinity, crystallite size and lattice constant of the composite material. FESEM images of the samples revealed that the novel material has a morphological features that resemble that of bone mineral.


2018 ◽  
Vol 55 (1B) ◽  
pp. 7 ◽  
Author(s):  
Dai Hai Nguyen

The objective of this study is to prepare biodegradable iron oxide nanoparticles with gelatin (GEL) for paclitaxel (PTX) delivery. In detail, Fe3O4 nanoparticles were prepared and then coated them with GEL (Fe3O4@GEL) conjugate by co–precipitation method. Furthermore, the formation of Fe3O4@GEL was demonstrated by Fourier transform infrared (FT–IR) and powder X–ray diffraction (XRD). The superparamagnetic property of Fe3O4@GEL was also showed by hysteresis loop analysis, the saturation magnetization reached 20.36 emu.g–1. In addition, size and morphology of Fe3O4@GEL nanoparticles were determined by transmission electron microscopy (TEM). The results indicated that Fe3O4@GEL nanoparticles were spherical shape with average diameter of 10 nm. Especially, PTX was effectively loaded into the coated magnetic nanoparticles, 86.7 ± 3.2 % for drug loading efficiency and slowly released up to 5 days. These results suggest that the potential applications of Fe3O4@GEL nanoparticles in the development of stable drug delivery systems for cancer therapy.


2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 104969-104978 ◽  
Author(s):  
Sobia Tabassum ◽  
Saba Zahid ◽  
Faiza Zarif ◽  
Mazhar Amjad Gilani ◽  
Faisal Manzoor ◽  
...  

Efficient drug delivery vehicles, hydroxyapatite modified by carboxylic acids, were prepared by an in situ co-precipitation method. The presence of functional groups and subsequent surface properties of modified HA improved ibuprofen loading and release efficiency.


2020 ◽  
Vol 10 (12) ◽  
pp. 4855-4867 ◽  
Author(s):  
Adrian Augustyniak ◽  
Pawel Sikora ◽  
Joanna Jablonska ◽  
Krzysztof Cendrowski ◽  
Elisabeth John ◽  
...  

AbstractBuilding materials are constantly improved with various additives and admixtures in order to achieve goals ranging from obtaining increased durability or antimicrobial activity up to reducing the carbon footprint left by the cement production. Since nanomaterials were proposed for cement products, many studies explored the possibilities for their incorporation. One of the novel trends in studying these materials is evaluating their impact on living organisms, with the focus not only on toxicology but also on the application potential. Therefore, in this study, we investigated the effects of three types of calcium–silicate–hydrate (C–S–H) seeds on reference microorganisms in the scope of their basic physiology and primary metabolism. Shape, size and elemental composition of C–S–H seeds were also evaluated. The tests on the reference microorganisms have shown that the reaction to these nanomaterials can be specific and depends on the strain as well as the type of used nanomaterial. Furthermore, the presence of C–S–H seeds in the growth environment led to metabolic stimulation that resulted in faster growth, higher biochemical activity, and increased biofilm formation. Based on our findings, we conclude that even though C–S–H seeds have antimicrobial potential, they can be potentially used to promote the growth of selected microbial strains. This phenomenon could be further investigated towards the formation of beneficial biofilms on building materials.


Author(s):  
Mustafa R. Abdulbaqi

Objective: This study aimed to evaluate the application of nanotechnology in improving the solubility and biologic activity as the antibacterial and antifungal drug of metronidazole (MTZ).Methods: Nanoparticles of bismuth sulfide (Bi2S3) were used as the nanocarriers for metronidazole (MTZ) and they were synthesized by chemical co-precipitation method. Drug loading on Bi2S3 nanoparticles, lattice property alteration and average particles sizes were evaluated using fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and powder X-ray diffraction (PXRD). The evaluation of the release of MTZ from Bi2S3 nanoparticles was carried out using USP type II rotating paddle apparatus. The antimicrobial activity of MTZ before and after loading was carried out by disc diffusion method against two aerobic gram+ve and one aerobic gram–ve bacteria, in addition to two fungi.Results: This study showed successful loading process as well as particles size reduction of MTZ after loading on Bi2S3 nanoparticles. In vitro release study showed a significant* increase in solubility and dissolution of MTZ after loading on Bi2S3 nanoparticles. MTZ showed a significant* increase in antibacterial (against gram+ve aerobic staphylococcus aureus and bacillus subtilis) and antifungal (Candida glabrata and Candida tropicalis) activities after loading process.Conclusion: Nanotechnology was applied successfully to improve both, solubility and biologic activity of the model drug used, metronidazole (MTZ). 


Author(s):  
Rahimah Rahimah ◽  
Ahmad Fadli ◽  
Yelmida Yelmida ◽  
Nurfajriani Nurfajriani ◽  
Zakwan Zakwan

Magnetite (Fe3O4) nanoparticles becomes a new innovation that gets attention of biomedicine scientists. Magnetite can be applied to cancer treatment as a drug carrier because it’s good biocompatibility and very low toxicity. The aim of this study was to determine the effect of temperature and retention time on the magnetite particle characteristics prepared by co-precipitation method. The first, FeCl3 and FeCl2 with 2:1 mole ratio were reacted with 10% NH4OH at 40 - 80°C temperatures during 1 – 30 minutes in a beaker glass. Subsequently, the precipitate was separated using filter paper and it dried into air oven at 100°C. The characteristic of obtained magnetite powder were determined using XRD and SEM. From XRD pattern indicates that magnetite formed at all temperatures with crystallite diameter in the range of 7-13 nm. The SEM results indicate the agglomeration of the magnetite particles with size in the range of 1.37 to 1.72 μm. In the other hand, the higher of temperature and retention time will make the agglomeration of the particles become more uniform. The increasing of temperature and the retention time will increase the magnetite crystallinity level.


Sign in / Sign up

Export Citation Format

Share Document