Optimization of Groove-Hole Distribution with Equidistant and Unequal Diameter on Air-Cushion Belt Conveyor

2008 ◽  
Vol 44-46 ◽  
pp. 635-642
Author(s):  
J.F. Li ◽  
Suo Long Zhang

In this paper, the research and development of the distribution of air-holes in the groove of air-cushion belt conveyor were introduced. The expressions of air-cushion pressure were given and the graph of it was shown as well. The air flow model nearby groove-holes and air outflow model on cross section were given too. In the same time, the distributing mode of equidistant air-holes with unequal diameter was studied and analyzed. In order to make up the shortage of the study on air-hole distributing mode of equidistant air-holes with unequal diameter on the air-cushion belt conveyor, an instance of the air-cushion flow field was numerically simulated based on the CFD software ,Fluent software. Several groups of data of different air-hole distributions, (for example, the center distances of air-holes in the groove of air-cushion belt conveyor are the same as each other and their diameters are different), were selected to compare with each other , and then, the results were compared with existing theory. According to the different results of the numerical simulation on the distributing mode of equidistant air-holes with unequal diameter, the optimal parameters of air-hole distributing mode were obtained, and the effect of prevent offset that comes the balance groove-hole on air-cushion belt conveyor. Moreover, the verification to prove the agreement between the results of numerically simulated and basic theory was carried out by the comparison analyses. The theoretical feasibility of air-hole distributing mode of equidistant air-holes with unequal diameter was analyzed.

2013 ◽  
Vol 732-733 ◽  
pp. 432-435 ◽  
Author(s):  
Zong Rui Hao ◽  
Juan Xu ◽  
Hai Yan Bie ◽  
Zhong Hai Zhou

Flow characteristics of stirred tanks with different structures were calculated by taking RNG k-ε model as the turbulent flow model. The results showed that at the same rotational speed, a large number of axial and radial vortexes were formed in the stirred tank with the baffle. The velocity in the blade area was high, and it decreased rapidly with the increasing distance to the blade. The double peak area of the radial velocity was formed in the stirred tank with baffle, and the high and low speed cycles were obtained in the cross-section. The baffle increased not only the axial circulation of the liquid in the tank but also the radial circulation, which help to mix the liquid.


Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.


2013 ◽  
Vol 368-370 ◽  
pp. 1379-1382
Author(s):  
Ying Jia ◽  
Li Zhang ◽  
Sheng Zhang

This paper carries out a numerical simulation of the atmospheric flow field around bridge. The variation law of airflow field around bridge is studied. Velocity and pressure distribution laws of flow field in horizontal plane and the cross-section are discussed, and influence range of flow field around bridge area is identified.


2013 ◽  
Vol 634-638 ◽  
pp. 3774-3777
Author(s):  
Min Hua Zhang ◽  
Hong Mei Zheng ◽  
Cui Liu ◽  
Yin Hu Qu ◽  
Tao Liang ◽  
...  

the inner flow fields of twelve Hema-type ATY nozzles which have different structure and parameters are simulated by the Fluent software, which is based on the CFD (Computational Fluid Dynamics) theory.Then the simulation results are analyzed,through wich the best designed nozzle is determined.


2014 ◽  
Vol 678 ◽  
pp. 576-581
Author(s):  
Chuang Li ◽  
Bin Xu ◽  
Jian Wu ◽  
Yi Cheng ◽  
Zhi Hao Ma

With the establishment of the appropriate porous media model of the combustor, temperature contour map on combustor cross section were simulated under the condition of different flow rate and different porosity in the Fluent software, and experimented to verify the simulation. The results show that: Flame core position moves toward the export with the increase of flow rate, but when the flow increases to a certain amount, the outlet temperature rises significantly. temperature distribution is the best when flow rate is 120 mL/min; With the decrease of the porosity, the flame core position moves to the entrance. Wall average temperature of the combustor is the highest when porosity is 0.4.


2013 ◽  
Vol 468 ◽  
pp. 119-123
Author(s):  
Xin Ze Zhao ◽  
Hou Lin Yan ◽  
Zhen Xing Yang ◽  
Wen Ling Xian Yu

Abstract: The simulation model of zoom nozzle was established in this article.The numerical simulation of flow field in the zoom nozzle was completed with the Fluent software and based on orthogonal experimental method the structure size optimization of the nozzle was completed too.The results showed that the cavitation phenomenon is easy to form near the transition area of the cylindrical section and expansion section of the nozzle.Using orthogonal experimental method,we can achieve structure size optimization of the nozzle from reducing cavitation rate and increase the distance that emergence point of maximum cavitation rate with the cylindrical section of nozzle.


2012 ◽  
Vol 616-618 ◽  
pp. 655-661 ◽  
Author(s):  
Run Quan Yang ◽  
Huai Fa Wang ◽  
Jian Chao Liu

A laboratory scale jet flotation column system was designed and air inflation for flotation column was provided by jet aerator with a chamber. In order to understand interior flow field distribution of jet aerator and flotation column, two-phase turbulent flow model was established by use of commercial computational fluid dynamics (CFD) software FLUENT 6.3.26. Modeling of the flow field was firstly established with GAMBIT 2.3.16; standard k-ε turbulence model and multiphase flow model MIXTURE were adopted for gas-liquid two-phase numerical simulation about jet aerator and flotation column. The simulation results show that gas-liquid two-phase mixing have been established by the cavity entrainment vortex flow in jet aerator with a chamber, and the distortion was really occurred although the reversed cone feed inlet have been designed, at the same time non-uniform distribution of air-bubble was also simulated. Simulation results can help to optimize the structure of the jet flotation column.


2013 ◽  
Vol 807-809 ◽  
pp. 2340-2344
Author(s):  
Fei Yue Wang ◽  
Yi Shun Zhang ◽  
Chang Liang Shi ◽  
Yuan Yang Liu ◽  
Ling Zhang

This paper use CFD software for geometric modeling and structural mesh for the Cone Hindered Settling Hydro-sizer and then apply the Fluent software for three-dimensional CFD simulation. Using RNG K-ε two-equation turbulence model and Swirl Dominated Flow model respectively, and the top speed of different feeding liquid two-phase flow of water under medium CFD numerical simulation results grader internal flow field characteristics.


Author(s):  
Cui Jianzhong ◽  
Xie Fangwei ◽  
Liu Qingyun ◽  
Wang Cuntang ◽  
Zhang Xianjun ◽  
...  

A new type of canned motor pump with extensive application value is designed, researched, and developed in this article. In order to grasp the characteristic of the internal flow field of the pump, the internal flow field is simulated numerically by using FLUENT software with the standard k–ɛ turbulence model, SIMPLEC algorithm, and multiple reference frame model. The distribution of the pressure and velocity of the flow in the canned motor pump is analyzed in different working conditions. Moreover, the head and efficiency of the pump is predicted based on the simulation results, which show that the head and efficiency of the canned motor pump in small flow rate will be better. The performance of the canned motor pump can be improved by appropriately increasing the outer diameter of the impeller and the base diameter of the volute. The results of the numerical simulation are in accord with theoretical analysis, which verifies the correctness of the numerical simulation. The investigations have important theoretical guiding significance for the design of the canned motor pump.


Sign in / Sign up

Export Citation Format

Share Document