A Preliminary Study of Stabilizing Artificial Saline Sludge Using Compound Stabilizer

2012 ◽  
Vol 450-451 ◽  
pp. 343-347
Author(s):  
Xiao Ming Shen ◽  
Zhan Guo Li ◽  
Da Huo ◽  
Hai Yan Zhao

There is large-area saline sludge which should be stabilized in China. In this experiment, cementitious component (cement), alkaline component (Ca(OH)2) and expansive component (sulfuraluminate cement or gypsum) were used as compound stabilizer with different combinations to stabilize artificial saline sludge, then the unconfined compressive strength of stabilized soil samples was determined, and the hydration products of the stabilized soil were analyzed by XRD, the stabilizing mechanism and the required hydrate species of stabilized soil were preliminary explored. The results show that the unconfined compressive strength of stabilized soil increases gradually with the increase of the cement content; when partial cement replaced by right amount of CH, the strength reaches the maximum and higher than that of soil-cement; the use of sulfuraluminate cement plaster as expansive component for stabilizing saline sludge has a relatively good overall affect compared to the gypsum; possible reasons for these results were speculated at the same time.

2018 ◽  
Vol 928 ◽  
pp. 263-268 ◽  
Author(s):  
Anuchit Uchaipichat

The soil-cement columns are generally installed and cured in the soft clay layers under confining pressure. The strength of the soil-cement columns may be influenced by confining pressure during curing period. In this study, the main objective was to study the influence of curing pressure on unconfined compressive strength of cemented clay. A series of unconfined compression tests was performed on a cement admixed clay sample cured under pressure values of 0 kPa (atmospheric pressure), 25kPa, 50kPa and 100 kPa using a typical unconfined compression equipment. The test samples with values of cement content of 0.5, 1.0 and 2.0 percent were cured for 28 days.The stress-strain curves obtained from all tests show a peak value of stress. The unconfined compressive strength or peak stress obviously increased with increasing cement content for all curing pressure conditions. It can be observed that the strength of samples gradually increased with curing pressure for cement content of 0.5 percent. For cement contents of 1.0 and 2.0 percent, the strengths of samples cured under pressures of 25 kPa dramatically increased from the strength of samples cured without pressure (0 kPa), however, the strengths of samples for curing pressures of 25, 50 and 100 kPa were not clearly different.


2021 ◽  
Vol 1042 ◽  
pp. 145-150
Author(s):  
Anuchit Uchaipichat

This research investigated the compressive strength of cemented soils admixed with saturated granular activated carbon (GAC). The saturated GAC was obtained from the water filtration system. A series of unconfined compressive strength was performed on both compacted soil-cement specimens and compacted soil-GAC-cement specimens with GAC content of 30 percent. All specimens were prepared by compaction with energy equivalent to the modified Proctor test. The results from modified Proctor tests showed that the maximum dry unit weight and the optimum moisture content of soil-GAC sample was less than those of soil sample. From the unconfined compression tests, there was tiny development of strength for both types of specimens with cement content of 1 percent throughout the curing period of 28 days. For both types of specimens with cement content of 2 and 3 percent, the significant development of strength occurred after curing for 3 days. The strength of specimens typically increased with increasing cement content. Generally, the strength of compacted soil-GAC-cement specimens was less than that of compacted soil- cement specimens. It was also observed that the relationships between normalized compressive strength ratio and curing period was unique for the specimens with the same cement content.


2011 ◽  
Vol 94-96 ◽  
pp. 358-364 ◽  
Author(s):  
Li Feng Wang

Unconfined compressive strength of various mixing proportions and ages of nanometer silicon and cement-stabilized soils(NCSS) are tested ,and the rules of compressive strength are got. Hydration products and microstructures of NCSS are discussed by means of XRD and SEM technology, and microstructural mechanisms of NCSS are analyzed. Results show that nanometer silicon powder added to cement-stabilized soil(CSS) can sharply improve the compressive strength of CSS. More Calcium silicate hydrates(C-S-H) and other hydration products can be produced in the process of secondary reaction of cement and water added nanometer silicon powder. X ray diffraction tests indicate the kinds and quantities of C-S-H increase with nanometer silicon contents. Strengths of NCSS are bettered by increasing jointed strength changed from edge-edge, edge-face connectios to cementation connections affected by increasing hydration products. Large pores of NCSS can be greatly decreased by adding nanometer silicon powder, and hydration products filling in the pores make NCSS more dense materials.


This paper discussed the effect of polypropylene fibre and curing period on the unconfined compressive strength (UCS) of cemented-black cotton soil. Various combinations of polypropylene fibres and cement have been taken and the UCS values of the treated black cotton soil specimens were determined after 3, 7 and 28days of curing. The study divulged that the mixing of polypropylene fibre increases UCS of cemented-black cotton soil. The rise in strength depends on the curing period. The 28days strength is 50 to 90% more than the corresponding 3days strength. The maximum enhancement of UCS from 969 to 2431kPa is achieved by adding 1% polypropylene fibre in cemented-black cotton soil having 15% cement after a curing period of 28days. The UCS of cemented-soil with 5% cement content, (Cc) and 1% polypropylene fibre is 781kPa which corresponds to the UCS of cemented-black cotton soil with 12% cement alone after a curing period of 28days. Thus, polypropylene fibre might be an economical admixture to enhance the performance of soil-cement column stabilised black cotton soil.


2021 ◽  
Vol 6 (3) ◽  
pp. 48
Author(s):  
Yulian Firmana Arifin ◽  
Eka Agustina ◽  
Fransius Andhi ◽  
Setianto Samingan Agus

This study aimed to explore the use of additives in soil–cement mixtures that have undergone a wetting-drying cycle. In total, two types of soil were used, granitic and lateritic, which are widely used in road base construction in the Katingan area, Central Kalimantan, Indonesia. The cement used was the ordinary Portland type I, while the additive utilized was for commercial purposes, and predominantly contained CaCl2. This research was conducted by testing the optimum cement content for each soil to determine the shear strength according to Indonesian standards (i.e., minimum Unconfined Compressive Strength of 2400 kPa). The optimum cement contents of granitic and lateritic soils were deduced to be 5.5% and 5% on a dry weight basis, respectively. The utilization of 0.8% additive resulted in a 0.5% reduction in the optimum cement content of granite-like soil. The results showed that the optimum additive content for granitic soil was higher than that without supplementation, while for lateritic, no changes occurred. The advantage of using supplements, however, was more pronounced in the samples when they had been subjected to wetting–drying cycles. Additionally, at the optimum additive level, the moisture content and soil-cement loss during wetting was always lower than without supplements.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Olumide M Ogundipe ◽  
Jonathan S Adekanmi

Two different samples of soil tested as A-7-5 and A-7-6 were stabilized respectively with lime and cement. The samples were stabilized with the additives in steps of 2% and subjected to laboratory tests such as consistency limits, compaction, California bearing ratio (CBR) and unconfined compressive strength (UCS) until it reached 10% additives by weight of dry soil sample. The Proctor energy type of compaction and soaked method of CBR was adopted for the research while the compressive strength of the soils were measured in an unconfined state at days 1, 7 and 14 respectively. The plasticity index (PI) of the soil samples increase at 2% additives which later reduces with further increase as the additives contents. The soil samples attained their maximum dry densities at 6% cement and lime respectively, with cement being more effective compared to lime and the water content needed to achieve maximum dry density of the soil were higher in cement than in lime. The CBR values of the soil appreciate with increase in the additives content as indicated in the rise from 1.12% at natural to 7.26% at 6% cement content. The UCS of the lime stabilized soil improved better than that of cement stabilized soil with respect to the age of curing.  Keywords- Stabilization, Lime, Cement, Soil, Laterite.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Aly Ahmed ◽  
Medhat Shehata ◽  
Said Easa

An experimental work was conducted to study the use of factory-waste roof shingles to enhance the properties of fine-grained soil used in road works. Cement kiln dust (CKD), a cogenerated product of Portland cement manufacturing, was used as a stabilizing agent while the processed shingles were added to enhance the soil tensile strength. The effects of shingles on strength and stability were evaluated using the unconfined compressive strength, splitting tensile strength, and California Bearing Ratio (CBR) tests. The results showed that the use of CKD alone resulted in a considerable increase in the unconfined compressive strength but had a small effect on the tensile strength. The addition of shingles substantially improved the tensile strength of the stabilized soil. A significant reduction in the capillary rise and a slight decrease in the permeability were obtained as a result of shingle addition. An optimal shingle content of 10% is recommended to stabilize the soil.


2005 ◽  
Vol 3 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Woo‐Sik Kim ◽  
Nguyen Minh Tam ◽  
Du‐Hwoe Jung

This paper describes the effect of factors on the strength characteristics of cement treated clay from laboratory tests performed on cement mixed clay specimens. It is considered that several factors such as soil type, sample preparing method, quantity of binder, curing time, etc. can have an effect on strength characteristics of cement stabilized clay. A series of unconfined compression tests have been performed on samples prepared with different conditions. The results indicated that soil type, mixing method, curing time, dry weight ratio of cement to clay (Aw), and water‐clay to cement (wc/c) ratio were main factors which can have an influence on unconfined compressive strength, modulus of elasticity, and failure strain of cement stabilized clay. Unconfined compressive strength of soil‐cement samples prepared from dry mixing method was higher than those prepared from wet mixing method.


Measurement ◽  
2018 ◽  
Vol 113 ◽  
pp. 99-107 ◽  
Author(s):  
Sepehr Soleimani ◽  
Shabnam Rajaei ◽  
Pengcheng Jiao ◽  
Arash Sabz ◽  
Sina Soheilinia

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247599
Author(s):  
Yingjun Jiang ◽  
Jiangtao Fan ◽  
Yong Yi ◽  
Tian Tian ◽  
Kejia Yuan ◽  
...  

The vertical vibration compaction method (VVCM), heavy compaction method and static pressure method were used to form phyllite specimens with different degrees of weathering. The influence of cement content, compactness, and compaction method on the mechanical properties of phyllite was studied. The mechanical properties of phyllite was evaluated in terms of unconfined compressive strength (Rc) and modulus of resilience (Ec). Further, test roads were paved along an expressway in China to demonstrate the feasibility of the highly weathered phyllite improvement technology. Results show that unweathered phyllite can be used as subgrade filler. In spite of increasing compactness, phyllite with a higher degree of weathering cannot meet the requirements for subgrade filler. With increasing cement content, Rc and Ec of the improved phyllite increases linearly. Rc and Ec increase by at least 15% and 17%, respectively, for every 1% increase in cement content and by at least 10% and 6%, respectively, for every 1% increase in compactness. The higher the degree of weathering of phyllite, the greater the degree of improvement of its mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document