scholarly journals Effect of Polypropylene Fibre and Curing Period on Unconfined Compressive Strength of Cemented-Black Cotton Soil

This paper discussed the effect of polypropylene fibre and curing period on the unconfined compressive strength (UCS) of cemented-black cotton soil. Various combinations of polypropylene fibres and cement have been taken and the UCS values of the treated black cotton soil specimens were determined after 3, 7 and 28days of curing. The study divulged that the mixing of polypropylene fibre increases UCS of cemented-black cotton soil. The rise in strength depends on the curing period. The 28days strength is 50 to 90% more than the corresponding 3days strength. The maximum enhancement of UCS from 969 to 2431kPa is achieved by adding 1% polypropylene fibre in cemented-black cotton soil having 15% cement after a curing period of 28days. The UCS of cemented-soil with 5% cement content, (Cc) and 1% polypropylene fibre is 781kPa which corresponds to the UCS of cemented-black cotton soil with 12% cement alone after a curing period of 28days. Thus, polypropylene fibre might be an economical admixture to enhance the performance of soil-cement column stabilised black cotton soil.

2021 ◽  
Vol 1042 ◽  
pp. 145-150
Author(s):  
Anuchit Uchaipichat

This research investigated the compressive strength of cemented soils admixed with saturated granular activated carbon (GAC). The saturated GAC was obtained from the water filtration system. A series of unconfined compressive strength was performed on both compacted soil-cement specimens and compacted soil-GAC-cement specimens with GAC content of 30 percent. All specimens were prepared by compaction with energy equivalent to the modified Proctor test. The results from modified Proctor tests showed that the maximum dry unit weight and the optimum moisture content of soil-GAC sample was less than those of soil sample. From the unconfined compression tests, there was tiny development of strength for both types of specimens with cement content of 1 percent throughout the curing period of 28 days. For both types of specimens with cement content of 2 and 3 percent, the significant development of strength occurred after curing for 3 days. The strength of specimens typically increased with increasing cement content. Generally, the strength of compacted soil-GAC-cement specimens was less than that of compacted soil- cement specimens. It was also observed that the relationships between normalized compressive strength ratio and curing period was unique for the specimens with the same cement content.


2019 ◽  
Vol 814 ◽  
pp. 399-403
Author(s):  
Anuchit Uchaipichat

This paper presents the relationship between the dynamic cone penetration (DCP) test results and the unconfined compressive strength of lateritic cemented soils. A series of DCP tests and unconfined compressive strength was performed on lateritic cemented soil. The soils sample used in this study was lateritic soil. The test results for the DCP tests are presented in terms of penetration index. It can be observed that the penetration index decreased with increasing curing period and cement content. Moreover, the unconfined compressive strength of cemented soils increased with curing period and cement content. The relationship between unconfined compressive strength and penetration index is presented. A unique relationship for unconfined compressive strength can be obtained.


2018 ◽  
Vol 928 ◽  
pp. 263-268 ◽  
Author(s):  
Anuchit Uchaipichat

The soil-cement columns are generally installed and cured in the soft clay layers under confining pressure. The strength of the soil-cement columns may be influenced by confining pressure during curing period. In this study, the main objective was to study the influence of curing pressure on unconfined compressive strength of cemented clay. A series of unconfined compression tests was performed on a cement admixed clay sample cured under pressure values of 0 kPa (atmospheric pressure), 25kPa, 50kPa and 100 kPa using a typical unconfined compression equipment. The test samples with values of cement content of 0.5, 1.0 and 2.0 percent were cured for 28 days.The stress-strain curves obtained from all tests show a peak value of stress. The unconfined compressive strength or peak stress obviously increased with increasing cement content for all curing pressure conditions. It can be observed that the strength of samples gradually increased with curing pressure for cement content of 0.5 percent. For cement contents of 1.0 and 2.0 percent, the strengths of samples cured under pressures of 25 kPa dramatically increased from the strength of samples cured without pressure (0 kPa), however, the strengths of samples for curing pressures of 25, 50 and 100 kPa were not clearly different.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 826 ◽  
Author(s):  
Jiansheng Shen ◽  
Yidong Xu ◽  
Jian Chen ◽  
Yao Wang

The use of desulfurization gypsum and steel/furnace slag composite cementitious material (DGSC) to solidify soft soil can fully utilize industrial wastes, reduce cement use and protect natural resources. By studying the unconfined compressive strengths of DGSC-solidified soil with different mix ratios, water-binder ratios and curing periods, the influence of those factors on the unconfined compressive strength of the soil can be analyzed. Furthermore, the quasi-water-cement ratio is introduced to predict the strength of the DGSC-solidified soil. The results show that the higher the DGSC content is, the better its effect on the soft soil. The variation in the unconfined compressive strength of DGSC-solidified soil overtime can be described by the same trend as that of cement-solidified soil but its early strength is lower than that of cement-solidified soil. When the water-binder ratio of the DGSC-solidified soil is the same as that of the cement-solidified soil, after a28-day curing period, the content of DGSC is higher than that of the 5% cement content, so the DGSC solidification effect is comparable to that of cement. Therefore, using DGSC instead of cement as a soft soil solidifying agent can meet the strength requirements of solidified soil.


2012 ◽  
Vol 450-451 ◽  
pp. 343-347
Author(s):  
Xiao Ming Shen ◽  
Zhan Guo Li ◽  
Da Huo ◽  
Hai Yan Zhao

There is large-area saline sludge which should be stabilized in China. In this experiment, cementitious component (cement), alkaline component (Ca(OH)2) and expansive component (sulfuraluminate cement or gypsum) were used as compound stabilizer with different combinations to stabilize artificial saline sludge, then the unconfined compressive strength of stabilized soil samples was determined, and the hydration products of the stabilized soil were analyzed by XRD, the stabilizing mechanism and the required hydrate species of stabilized soil were preliminary explored. The results show that the unconfined compressive strength of stabilized soil increases gradually with the increase of the cement content; when partial cement replaced by right amount of CH, the strength reaches the maximum and higher than that of soil-cement; the use of sulfuraluminate cement plaster as expansive component for stabilizing saline sludge has a relatively good overall affect compared to the gypsum; possible reasons for these results were speculated at the same time.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chen Wang ◽  
Wentao Li

A study has been conducted to investigate the mechanical properties of cement-mixed gravel using the unconfined compression test and the tensile test. Basic factors including the curing period, the water-binder ratio, the cement content, and the strain rate were evaluated. Ordinary Portland cement with fly ash was employed as the cementation agent for preparing cemented samples. The results indicate that the unconfined compressive strength, the deformation modulus, and the tensile strength increase with the increase in the curing period. The ratio of tensile strength to unconfined compressive strength has no distinct change after 7 days. An optimum water-binder ratio can be obtained. The unconfined compressive strength and deformation modulus decrease as the water-binder ratio decreases and increase from the optimum water-binder ratio. With the increasing of the cement content, the unconfined compressive strength increases distinctly, the deformation modulus increases significantly when the cement content is less than 4% and then increased slowly, and the failure strain increases to a peak value and then decreases. With the increasing of the strain rate, the unconfined compressive strength increases slightly and the deformation modulus increases slowly. The failure strain decreases with an increase in the strain rate.


2021 ◽  
Vol 6 (3) ◽  
pp. 48
Author(s):  
Yulian Firmana Arifin ◽  
Eka Agustina ◽  
Fransius Andhi ◽  
Setianto Samingan Agus

This study aimed to explore the use of additives in soil–cement mixtures that have undergone a wetting-drying cycle. In total, two types of soil were used, granitic and lateritic, which are widely used in road base construction in the Katingan area, Central Kalimantan, Indonesia. The cement used was the ordinary Portland type I, while the additive utilized was for commercial purposes, and predominantly contained CaCl2. This research was conducted by testing the optimum cement content for each soil to determine the shear strength according to Indonesian standards (i.e., minimum Unconfined Compressive Strength of 2400 kPa). The optimum cement contents of granitic and lateritic soils were deduced to be 5.5% and 5% on a dry weight basis, respectively. The utilization of 0.8% additive resulted in a 0.5% reduction in the optimum cement content of granite-like soil. The results showed that the optimum additive content for granitic soil was higher than that without supplementation, while for lateritic, no changes occurred. The advantage of using supplements, however, was more pronounced in the samples when they had been subjected to wetting–drying cycles. Additionally, at the optimum additive level, the moisture content and soil-cement loss during wetting was always lower than without supplements.


Expansive soils are problematic soils for Civil Engineers. Black cotton (BC) soils possess low strength and high compressibility, due to these properties black cotton soils are considered to be challenging one for analysis. To achieve desired properties of soil for construction purpose these black cotton soil must be enhanced to meet its requirement. To modify the properties of black cotton soils, many treatment methods are there. In this paper an attempt has been made to improve the properties of black cotton soil by using industrial waste through stabilization method. By stabilizing the soil properties are enhanced and make it suitable for subgrade construction. In this work, the combined effect of Lime and Phosphogypsum (PG) on compaction characteristics, Atterberg’s Limit, Unconfined Compressive Strength (UCS) for original soil, California Bearing Ratio (CBR) and direct shear Test of a black cotton soil with percentage varying of Lime and Phosphogypsum was carried out. The soil samples were tested for tri-axial compression test and CBR tests were carried out after 4 days curing period. From the results, it has been inferred that the black cotton soil treated with Lime and Phosphogypsum in the percentages of (4:4) has better strength characteristics. Hence, it may be concluded that Lime and Phosphogypsum can be used for stabilization of black cotton soils for pavement subgrade


2005 ◽  
Vol 3 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Woo‐Sik Kim ◽  
Nguyen Minh Tam ◽  
Du‐Hwoe Jung

This paper describes the effect of factors on the strength characteristics of cement treated clay from laboratory tests performed on cement mixed clay specimens. It is considered that several factors such as soil type, sample preparing method, quantity of binder, curing time, etc. can have an effect on strength characteristics of cement stabilized clay. A series of unconfined compression tests have been performed on samples prepared with different conditions. The results indicated that soil type, mixing method, curing time, dry weight ratio of cement to clay (Aw), and water‐clay to cement (wc/c) ratio were main factors which can have an influence on unconfined compressive strength, modulus of elasticity, and failure strain of cement stabilized clay. Unconfined compressive strength of soil‐cement samples prepared from dry mixing method was higher than those prepared from wet mixing method.


Sign in / Sign up

Export Citation Format

Share Document