Study of Tool Materials Rapid Selection in Cutting 300M Steel

2012 ◽  
Vol 472-475 ◽  
pp. 986-990 ◽  
Author(s):  
Jun Xian Xie ◽  
Wu Yi Chen ◽  
Jian Fei Sun

The validity of tool materials rapid selection based on initial wear for milling 300M steel were investigated under different cutting speed condition. Wear experiments of three tool materials selected from 17 tools suggested by the tool makers were conducted at three levels of cutting speed: low speed (100.5m/min), medium speed (150.7 m/min) and high speed (201.0m/min).Wear curves of the three tool materials are obtained through the above wear experiments. The relationship between tool performance and initial wear is analysed based on the obtained wear curves.

2014 ◽  
Vol 783-786 ◽  
pp. 1142-1146
Author(s):  
Takaomi Itoi ◽  
Tomoaki Sudo ◽  
Kyosuke Yoshimi

Recycle-type Fe3Al (hereinafter designated as Re-Fe3Al) based alloys reinforced by the carbides of TiC or ZrC were processed by the high frequency induction melting method using a high-carbon Cr steel sludge, Al can scraps and the transition metals of Ti or Zr. The carbides were synthesized by in-situ reaction between the transition metal and carbon in the molten iron aluminum alloy. Vickers hardness values are 309HV0.5 for Re-Fe3Al/TiC alloy, and 473HV0.5 for Re-Fe3Al/ZrC alloy, which are higher than that of P-Fe3Al (preprared from pure-Fe and-Al). The cutting performance of the Re-Fe3Al baed alloys was compared with a High-Speed-Steel (HSS) by cutting tests for pure-Cu extruded bar (C1020) using a lathe under a dry condition. Tool life limit was estimated from frank wear length after the cutting tests of C1020 by finish-machining. Tool life limit of Re-Fe3Al/TiC alloy is more than16 min; P-Fe3Al was 12 min; HSS was 8 min, Re-Fe3Al/ZrC alloy was 7 min at the cutting speed of 100m/min. Also, tool life limit of the Re-Fe3Al/TiC alloy was more than twice times as long as that of the HSS at the cutting speed of 300/min. The relationship between cutting speed and tool life limit clearly indicated that the Re-Fe3Al/TiC alloy was better than the HSS at a higher cutting speed. Therefore, it was concluded that Re-Fe3Al/TiC alloy has excellent cutting tool performance.


2012 ◽  
Vol 152-154 ◽  
pp. 183-187 ◽  
Author(s):  
Quang Cherng Hsu ◽  
Yen Yu Cheng ◽  
Bao Hsin Liu

According to MD simulation results, pressing depth between two bonding materials will affect bonding strength. Alloy material (Al0.9Cu0.1) had void defect phenomenon in low bonding speed condition because the increasing chance of atom migration which will result in low bonding strength. High tensile speed causes material fracture phenomena happen earlier than low speed. Material stress in low speed is smaller than in high speed. Fracture morphology of material is different in different tensile speed. In low speed condition, material can be stretched thinner than in high speed condition. Material in high temperature has greater kinetic energy than low temperature; therefore, material in high temperature has better formability and behaves larger tensile strain than low temperature. For pure aluminum, when temperature raises to 900K which is close to melting point (933K), its crystal structure is no longer belongs to F.C.C. structure, so bonding strength is weaker than low temperature. Large size material has larger contact area than small size material; therefore, the tensile force and tensile strength of the former are larger than the latter. The order of bonding strength for these three materials is: binary alloy > pure copper > pure aluminum.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 464
Author(s):  
Alain Gil Del Val ◽  
Fernando Veiga ◽  
Octavio Pereira ◽  
Luis Norberto Lopez De Lacalle

Threading holes using tapping tools is a widely used machining operation in the industry. This manufacturing process involves a great tool immersion in the part, which involves both friction and cutting. This makes the use of coatings critical to improving tool life. Four coatings are used based on Physical vapor deposition (PVD) technology—TiN, TiCN, TiAlN and TiAlN+WC/C are compared to uncoated tool performance. The effect of various coatings on the life of M12 × 1.5 tapping tools during threading of through holes 20 mm deep, in GG25 casting plates, dry and applying cutting speed of 50 m/min. The end-of-life criterion has been established based on a cutting torque of 16 N-m. Taking the uncoated tap as a basis for comparison, it is observed that coatings based on PVD technologies increase tool life doubling in the most advantageous case with the TiAlN coating. PVD type coatings provide better protection to wear at cylindrical area of the tool, where the thread profile is finished, than uncoated taps. The teeth located in the cone-cylinder transition zone of the taps suffer the most wear regardless of the coating. However, taps coated with TiAlN+WC/C wear level values is lowest of all the coatings tested, which indicates a strong reinforcement in these teeth.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hongmei Jiang ◽  
Li He ◽  
Qiang Zhang ◽  
Lipo Wang

Modern high-pressure turbine blades operate at high-speed conditions. The over-tip-leakage (OTL) flow can be high-subsonic or even transonic. From the consideration of problem simplification and cost reduction, the OTL flow has been studied extensively in low-speed experiments. It has been assumed a redesigned low-speed blade profile with a matched blade loading should be sufficient to scale the high-speed OTL flow down to the low-speed condition. In this paper, the validity of this conventional scaling approach is computationally examined. The computational fluid dynamics (CFD) methodology was first validated by experimental data conducted in both high- and low-speed conditions. Detailed analyses on the OTL flows at high- and low-speed conditions indicate that, only matching the loading distribution with a redesigned blade cannot ensure the match of the aerodynamic performance at the low-speed condition with that at the high-speed condition. Specifically, the discrepancy in the peak tip leakage mass flux can be as high as 22%, and the total pressure loss at the low-speed condition is 6% higher than the high-speed case. An improved scaling method is proposed hereof. As an additional dimension variable, the tip clearance can also be “scaled” down from the high-speed to low-speed case to match the cross-tip pressure gradient between pressure and suction surfaces. The similarity in terms of the overall aerodynamic loss and local leakage flow distribution can be improved by adjusting the tip clearance, either uniformly or locally.


Author(s):  
Robert Ladouceur ◽  
Serge Sévigny

Video lotteries seem to be one of the most profitable games for the gambling industry and are reported as the game of choice for many problem gamblers. Their popularity or, in some cases, their addictiveness, might be related to their structural characteristics: reinforcement schedule, lights, appearance, sound, and speed. We investigated the effects of video lottery game speed on concentration, motivation to play, loss of control, and number of games played. Forty-three participants were randomly assigned to either a high-speed (5 seconds) or a low-speed (15 seconds) condition. Results: gamblers in the high-speed condition played more games and underestimated the number of games played more than did participants in the low-speed condition. However, speed did not influence concentration, motivation, or loss of control over time or money. Conclusion: speed has a limited impact on occasional video lottery gamblers. The theoretical and practical implications of speed are discussed in the context of responsible gambling policies.


Author(s):  
Hongmei Jiang ◽  
Li He ◽  
Qiang Zhang ◽  
Lipo Wang

Modern High Pressure Turbine (HPT) blades operate at high speed conditions. The Over-Tip-Leakage (OTL) flow, which plays a major role in the overall loss generation for HPT, can be high-subsonic or even transonic. In practice from the consideration of problem simplification and cost reduction, the OTL flow has been studied extensively in low speed experiments. It has been assumed a redesigned low speed blade profile with a matched blade loading should be sufficient to scale the high speed OTL flow down to the low speed condition. In this paper, the validity of this conventional scaling approach is computationally examined. The CFD methodology was firstly validated by experimental data conducted in both high and low speed conditions. Detailed analyses on the OTL flows at high and low speed conditions indicate that, only matching the loading distribution with a redesigned blade cannot ensure the match of the aerodynamic performance at the low speed condition with that at the high-speed condition. Specifically, the discrepancy in the peak tip leakage mass flux can be as high as 22.2%, and the total pressure loss at the low speed condition is 10.7% higher than the high speed case. An improved scaling method is proposed hereof. As an additional dimension variable, the tip clearance can also be “scaled” down from the high speed to low speed case to match the cross-tip pressure gradient between pressure and suction surfaces. The similarity in terms of the overall aerodynamic loss and local leakage flow distribution can be improved by adjusting the tip clearance, either uniformly or locally. The limitations of this proposed method are also addressed in this paper.


2006 ◽  
Vol 315-316 ◽  
pp. 459-463 ◽  
Author(s):  
Yi Wan ◽  
Zhan Qiang Liu ◽  
Xing Ai

High-speed machining (HSM) has received great interest because it leads to an increase of productivity and a better workpiece surface quality. However, tool wear increases dramatically due to the high temperature at the tool/workpiece interface. Proper selection of cutting tool and cutting parameters is the key process in high-speed machining. In this paper, experiments have been conducted to high speed milling pearlitic cast iron with different tool materials, including polycrystalline cubic boron nitrogen, ceramics and coated cemented carbides. Wear curves and tool life curves have been achieved at various cutting speeds with different cutting tools. If efficiency is considered, Polycrystalline Cubic Boron Nitrogen cutting tool materials are preferred in finish and semi-finish machining. According to the different hardness of cast iron, the appropriate range of cutting speed is from 850 m/min to 1200m/min.


1964 ◽  
Vol 86 (2) ◽  
pp. 134-140 ◽  
Author(s):  
K. L. Chandiramani ◽  
N. H. Cook

An attempt has been made to investigate the nature and cause of the variation of surface finish with cutting speed during orthogonal cutting operations. It is found that the variation of cutting speed alone is sufficient to give rise to the three different mechanisms of chip formation, conventionally known as discontinuous, continuous without “bue” (built-up-edge) and continuous with bue. The transition from low-speed, nonbue cutting to high-speed, bue cutting is found to greatly influence the surface finish and in fact the entire cutting mechanism. Photomicrographs of the cutting zones, the chips, and the profiles of the finished surfaces have been taken to observe these changes closely. Tests have also been carried out to determine the relative importance of cutting speed and cutting temperature in affecting the surface finish of the workpiece being machined.


2012 ◽  
Vol 452-453 ◽  
pp. 1429-1433 ◽  
Author(s):  
Quang Cherng Hsu ◽  
Yen Yu Cheng ◽  
Bao Hsin Liu

According to MD simulation results, pressing depth between two bonding materials will affect bonding strength. Alloy material (Al0.9Cu0.1) had void defect phenomenon in low bonding speed condition because the increasing chance of atom migration which will result in low bonding strength. High tensile speed causes material fracture phenomena earlier happen than low speed. Material stress in low speed is smaller than in high speed. Fracture morphology of material is different in different tensile speed. In low speed condition, material can be stretched thinner than in high speed condition. Material in high temperature has greater kinetic energy than low temperature; therefore, material in high temperature has better formability and behaves larger tensile strain than low temperature. For pure aluminum, when temperature raises to 900K which is close to melting point (933K), its crystal structure is no longer belongs to F.C.C. structure, so bonding strength is weaker than low temperature. Large size material has larger contact area than small size material; therefore, the tensile force and tensile strength of the former are larger than the latter. The order of bonding strength for these three materials is: binary alloy > pure copper > pure aluminum.


2010 ◽  
Vol 97-101 ◽  
pp. 3108-3112
Author(s):  
Bing Yan ◽  
Chao Hui Xu ◽  
Wei Wang

The machining characteristics of hardened still for mould and die greatly affect the accuracy and productivity in industry. The physical modeling and simulation of ball end milling is investigated in this paper. The influence of cutting speed to the cutting mechanism in high speed cutting is taken into account and the momentum force of chip is introduced into the model. By analyzing the shape of the chips the relationship between the cutting speed and shear angle is obtained. The model has been tested on 718HH, with appropriate Seco tools. The validation shows that the adjustment between the model and the real force is adequate, both in shape and magnitude.


Sign in / Sign up

Export Citation Format

Share Document