Numerical Simulation of Temperature Field in the Cyclone

2012 ◽  
Vol 479-481 ◽  
pp. 462-466
Author(s):  
Ping Yang Xiao ◽  
Zhen Wei Zhang

This paper mainly focuses on the numerical simulation of temperature field in the cyclone separation. The authors took advantage of RSM turbulence model of software FLUENT to imitate the temperature field. This thesis puts forward the temperature distribution of the cyclone, and figures out that the overall temperature is 373°C. Temperature difference in different region is less than one centigrade degree with the maximum temperature in the cone part and the minimum temperature in inlet tube and cylinder part of the cyclone, what’s more, the temperature is relatively higher near the wall. The air compression can lead the higher temperature in the lower part, so the cone part has the highest temperature. The higher temperature near the wall is caused by the friction between the wall and flow.

2012 ◽  
Vol 614-615 ◽  
pp. 208-211
Author(s):  
Zhen Wei Zhang ◽  
Ying Yu ◽  
Jie Leng ◽  
Su Juan Zhang

The temperature distribution of the cyclone was analyzed in the presented work, which was imitated by using RSM turbulence model of software FLUENT. Temperature difference in different regions is less than one centigrade degree with the maximum temperature in the cone part and the minimum temperature in inlet tube and cylinder part of the cyclone, what’s more, the temperature is relatively higher near the wall. The air compression can lead the higher temperature in the lower part, so the cone part has the maximum temperature. The higher temperature near the wall is caused by the friction between the wall and flow.


2011 ◽  
Vol 354-355 ◽  
pp. 1241-1244
Author(s):  
Yan He ◽  
Man Ding ◽  
Qian Zhang

In this paper the temperature field of Concrete Filled Steel Tube (CFST) member under solar radiation is simulated. The results show that temperature distribution caused by solar radiation is nonlinear over the cross-section of CFST member, and it is significantly varied with time and sections, the largest nonlinear temperature difference is over 26.3°C.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Jeong-Joo Lee ◽  
Ji-San Kim ◽  
Hyuk-Kyun Chang ◽  
Dong-Chan Lee ◽  
Chang-Wan Kim

Large-format lithium-ion batteries (LIBs) suffer from problems in terms of their product life and capacity due to large temperature differences in LIB cells. This study analyzes the effect of design factors on temperature distribution using a 3D electrochemical–thermal model. The design of experiments methodology is used to obtain the sampling points and analyze the effect of the cell aspect ratio, negative tab attachment position, and positive tab attachment position. These were considered as design factors for the maximum and minimum temperatures, as well as their difference, in large-format LIB cells. The results reveal that the cell aspect ratio, negative tab attachment position, and positive tab attachment position considerably influence temperature distribution. The cell aspect ratio has the most significant effect on the temperature distribution by changing the longest current pathway and the distance between tabs and the lowest temperature point in the LIB cell. A positive tab attachment position affects the maximum temperature, minimum temperature, and the temperature difference due to the heat generation caused by the high resistance of aluminum, which the positive tab is made. Furthermore, a negative tab attachment position affects the minimum temperature due to low resistance.


2020 ◽  
Vol 10 (7) ◽  
pp. 2445
Author(s):  
Deshen Chen ◽  
Hongliang Qian ◽  
Huajie Wang ◽  
Wucheng Xu ◽  
Jingfang Li

The temperature of spatial structures under construction can have a significant non-uniform distribution induced by intense solar radiation. This temperature distribution affects the component assembly and results in closure difficulties, potentially causing safety hazards. A spatial grid structure model was designed and subjected to temperature field test under sunlight to study the temperature distribution of the structure and for comparison with numerical simulation methods. The distribution characteristics and the time-varying laws were analyzed based on the test data. Then, the ray-casting algorithm was introduced to analyze the shadow influence between members, so that the temperature distribution of the model was simulated accurately, which was verified by the test data. The results show that the spatial grid structure had an obvious non-uniform temperature distribution, with a maximum temperature rise of 16 °C when compared with ambient temperature and a maximum temperature difference between members of 11 °C. The variation laws were gained both from the test and the numerical simulation. The numerical simulation method proposed herein can be used to calculate the shadow distribution and the temperature field of the structure effectively. The research methods and conclusions can provide valuable references for thermal design, monitoring, and control of spatial grid structures.


Author(s):  
Shaolin Chen ◽  
Hong Zhang ◽  
Liaoping Hu ◽  
Guangqing He ◽  
Fen Lei ◽  
...  

The fatigue life of turbine housing is an important index to measure the reliability of a radial turbocharger. The increase in turbine inlet temperatures in the last few years has resulted in a decrease in the fatigue life of turbine housing. A simulation method and experimental verification are required to predict the life of a turbine housing in the early design and development process precisely. The temperature field distribution of the turbine housing is calculated using the steady-state bidirectional coupled conjugate heat transfer method. Next, the temperature field results are considered as the boundary for calculating the turbine housing temperature and thermomechanical strain, and then, the thermomechanical strain of the turbine housing is determined. Infrared and digital image correlations are used to measure the turbine housing surface temperature and total thermomechanical strain. Compared to the numerical solution, the maximum temperature RMS (Root Mean Square) error of the monitoring point in the monitoring area is only 3.5%; the maximum strain RMS error reached 11%. Experimental results of temperature field test and strain measurement test show that the testing temperature and total strain results are approximately equal to the solution of the numerical simulation. Based on the comparison between the numerical calculation and experimental results, the numerical simulation and test results were found to be in good agreement. The experimental and simulation results of this method can be used as the temperature and strain (stress) boundaries for subsequent thermomechanical fatigue (TMF) simulation analysis of the turbine housing.


2021 ◽  
Vol 315 ◽  
pp. 3-9
Author(s):  
Yuan Gao ◽  
Li Hua Zhan ◽  
Hai Long Liao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

The uniformity of temperature field distribution in creep aging process is very important to the forming accuracy of components. In this paper, the temperature field distribution of 2219 aluminum alloy tank cover during aging forming is simulated by using the finite element software FLUENT, and a two-stage heating process is proposed to reduce the temperature field distribution heterogeneity. The results show that the temperature difference of the tank cover is large in the single-stage heating process, and the maximum temperature difference is above 27°C,which seriously affects the forming accuracy of the tank cover. With two-stage heating process, the temperature difference in the first stage has almost no direct impact on the forming accuracy of the top cover. In the second stage, the temperature difference of the tank cover is controlled within 10°C, compared with the single-stage heating, the maximum temperature difference is reduced by more than 17°C. The two-stage heating effectively reduces the heterogeneity of the temperature field of the top cover. The research provides technical support for the precise thermal mechanical coupling of large-scale creep aging forming components.


2019 ◽  
Vol 25 (6) ◽  
pp. 989-997
Author(s):  
Yajun Yin ◽  
Wei Duan ◽  
Kai Wu ◽  
Yangdong Li ◽  
Jianxin Zhou ◽  
...  

Purpose The purpose of this study is to simulate the temperature distribution during an electron beam freeform fabrication (EBF3) process based on a fully threaded tree (FTT) technique in various scales and to analyze the temperature variation with time in different regions of the part. Design/methodology/approach This study presented a revised model for the temperature simulation in the EBF3 process. The FTT technique was then adopted as an adaptive grid strategy in the simulation. Based on the simulation results, an analysis regarding the temperature distribution of a circular deposit and substrate was performed. Findings The FTT technique was successfully adopted in the simulation of the temperature field during the EBF3 process. The temperature bands and oscillating temperature curves appeared in the deposit and substrate. Originality/value The FTT technique was introduced into the numerical simulation of an additive manufacturing process. The efficiency of the process was improved, and the FTT technique was convenient for the 3D simulations and multi-pass deposits.


Author(s):  
Chao Zhu ◽  
Mo Yang ◽  
Yuwen Zhang ◽  
Jinlong Wang

A water tank of the domestic cooling and heating unit, which has a helix coil, is used to recover the waste heat of the unit. The temperature field and the flow field in the water tank have great effects on the variation of the water temperature in it. In order to obtain the temperature distribution, the flow distribution and the influencing factors, and then obtain the changing situation of the water temperature, the temperature field and the flow field of the water tank are simulated by using Fluent. The results showed that the water temperature will change with different coil decorate. The numerical model which is created by Fluent is appropriate and could be used to improve the layout of the coil in the water tank and speed up heating.


2011 ◽  
Vol 189-193 ◽  
pp. 2269-2273
Author(s):  
Chun Yue Huang ◽  
Tian Ming Li ◽  
Ying Liang ◽  
He Geng Wei

In the thermal design of embedded multi-chip module (MCM), the placement of chips has a significant effect on temperature field distributing, thus influences the reliability of the embedded MCM. The thermal placement optimization of chips in embedded MCM was studied in this paper, the goal of this work is to decrease temperature and achieve uniform thermal field distribution within embedded MCM. By using ANSYS the finite element analysis model of embedded MCM was developed, the temperature field distributing was calculated. Based on genetic algorithms, chips placement optimization algorithm of embedded MCM was proposed and the optimization chips placement of embedded MCM was achieved by corresponding optimization program. To demonstrate the effectiveness of the obtained optimization chips placement, finite element analysis (FEA) was carried out to assess the thermal field distribution of the optimization chips placement in embedded MCM by using ANSYS. The result shows that without chips placement optimizing the maximum temperature and temperature difference in embedded MCM model are 87.963°C and 2.189°C respectively, by using chips placement optimization algorithm the maximum temperature drop than the original 0.583°C and the temperature difference is only 0.694°C . It turns out that the chip placement optimization approach proposed in this work can be effective in providing thermal optimal design of chip placement in embedded MCM.


2011 ◽  
Vol 197-198 ◽  
pp. 1389-1394
Author(s):  
Sun Yi Chen

When the operating process of delay coking is cyclically changing from 25°C to 500°C, it would usually induce the effect of heat treatment on the shell of coke drum. After a special model of the kinetic medium climbing along the inside-wall of the coke drum at a steady rate set up, the resulting two-dimensional kinetic temperature field of shell in radial and axial directions has been calculated and analyzed by FEM. The relation between the material physical property of the shell and its temperature has been considered. The results show that the radial temperature difference or the axial temperature difference caused by the cooling water is more than that caused by the hot oil. The maximum temperature difference between the inside-wall and the outside-wall is 40°C below the medium level, 30mm by the hot oil and 60 °C or 25 mm by the cooling water. The circumferential uneven temperature field, location and concave/convex or incline/bend of body have been surveyed and analyzed. The lat-circle deformation of transverse section has been discussed.


Sign in / Sign up

Export Citation Format

Share Document