Preparation of LLDPE/Modified Silica Nanoparticle with Triethoxyvinylsilane Film for Microwaveable Packaging

2012 ◽  
Vol 488-489 ◽  
pp. 1525-1529
Author(s):  
Arjaree Pradittham ◽  
Supapen Trejitwattanaku ◽  
Titima Sramanee ◽  
Sarinthip Thanakkasaranee ◽  
Duangduen Atong ◽  
...  

Nanocomposite films based on liner low density polyethylene (LLDPE), containing of 1 phr silica nanoparticle and 1, 3 and 5 %wt triethoxyvinylsilane as a new coupling were prepared and characterized using FTIR tests, scanning electron microscopy, tensile tests, oxygen and water vapor permeation measurements. Optimization of the technology involved in production of an exfoliated nanocompound is a complex process in which multiple variables and parameters are involved. The results of the study showed that the feed position of the nanoparticle in the double screw extruder is of vital importance in obtaining an exfoliated film. The maximum triethoxyvinylsilane used in the extruder was 3 %wt, for LLDPE/modified silica nanoparticle. There was no exfoliation or intercalation of the silica particle in the absence of triethoxyvinylsilane. The oxygen barrier properties of the LLDPE/modified silica nanoparticle film were significantly better than those of the LDPE/silica nanoparticle film. In addition to barrier properties, the LLDPE/silica/3%TEVS film also had better Young’s modulus and tensile strength than their counterparts without triethoxyvinylsilane.

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 202 ◽  
Author(s):  
Mithilesh Yadav ◽  
Kartik Behera ◽  
Yen-Hsiang Chang ◽  
Fang-Chyou Chiu

In this study, green composite films based on cellulose nanocrystal/chitosan (CNC/CS) were fabricated by solution casting. FTIR, XRD, SEM, and TEM characterizations were conducted to determine the structure and morphology of the prepared films. The addition of only 4 wt.% CNC in the CS film improved the tensile strength and Young’s modulus by up to 39% and 78%, respectively. Depending on CNC content, the moisture absorption decreased by 34.1–24.2% and the water solubility decreased by 35.7–26.5% for the composite films compared with neat CS film. The water vapor permeation decreased from 3.83 × 10−11 to 2.41 × 10−11 gm−1 s−1Pa−1 in the CS-based films loaded with (0–8 wt.%) CNC. The water and UV barrier properties of the composite films showed better performance than those of neat CS film. Results suggested that CNC/CS nanocomposite films can be used as a sustainable packaging material in the food industry.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
G. T. D. Chandrakumara ◽  
D. M. S. N. Dissanayake ◽  
M. M. M. G. P. G. Mantilaka ◽  
R. T. De Silva ◽  
H. M. T. G. A. Pitawala ◽  
...  

In this study, chitosan nanocomposite thin films were successfully fabricated by incorporating hematite nanoparticles (HNPs) and akaganeite nanoparticles (ANPs) as reinforcing fillers using the solution casting method. HNPs and ANPs were synthesized via a urea-assisted synthesis route using naturally occurring ferruginous laterites. Scanning electron microscopic (SEM) images indicated the spherical to subhexagonal morphology of the HNPs and rice-like morphology of the ANPs. X-ray diffractograms indicate the crystalline structure of iron oxides as hematite and akaganeite. Tensile tests were carried out to evaluate the mechanical properties of the nanocomposite films where maximum tensile stress of the chitosan/HNP composites was improved as high as 35.7% while chitosan/ANP composites indicated 43.5%. Thermal decomposition curves obtained by thermogravimetric analysis (TGA) indicate that the thermal stability of the nanocomposites has improved remarkably compared to neat chitosan films. Furthermore, these nanocomposites exhibited excellent UV barrier properties as identified by UV-visible spectrometry. Fourier-transform infrared (FTIR) spectroscopic results are evident in the presence of Fe-O bond in the wavenumber around 480-500 cm-1, and the result also indicated that the nanofillers interact with the chitosan matrix via hydrogen bonding, which enhanced the physical properties of the nanocomposites. Incorporation of iron oxide nanoparticle varieties into chitosan has led to improvements of certain physical and chemical properties, which make chitosan a promising material for packaging applications.


2012 ◽  
Vol 735 ◽  
pp. 301-306 ◽  
Author(s):  
Hai Jian Liang ◽  
Xiao Wei Wu ◽  
Yong Wang ◽  
Quan Lin Jin ◽  
Zhao Li Ma ◽  
...  

This article describes the high rate superplastic forming. The high rate superplastic forming technology is a new complex process,which integrates hot stamping and superplastic forming .It has feature of rapidity of the hot stamping and character of excellent formability of the superplastic forming.We obtained the best proportion of the hot forming and the superplastic forming through simulation experiment, and formed a car’s abonnet by applying the proportion.Compared with the high rate superplastic forming,the forming quality is better than that of hot forming. and the forming time is less than that of superplastic forming. Result shows that ,the high rate superplastic forming technology can meet the requirements for mass production.


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80739-80748 ◽  
Author(s):  
Hua-Dong Huang ◽  
Sheng-Yang Zhou ◽  
Peng-Gang Ren ◽  
Xu Ji ◽  
Zhong-Ming Li

The successful conversion from hydrophilic GONSs to hydrophobic ODA–GONSs imparts LDPE nanocomposite films with enhanced mechanical and barrier performances for potential packaging materials.


2021 ◽  
Vol 63 (4) ◽  
pp. 311-316
Author(s):  
Simon Backens ◽  
Jan Siering ◽  
Stefan Schmidt ◽  
Nikolai Glück ◽  
Wilko Flügge

Abstract Lightweight pressure vessels of type IV for hydrogen storage consist of a thermoplastic inner liner, commonly from polyethylene or polyamide. The liner is the permeation barrier against the compressed gas and must prevent the formation of cracks, also after temperature changes, for example after refueling processes. In the present work high-density polyethylene, cross-linked polyethylene, polyamide 6 and polyamide 12 were characterized by tensile tests, single notch impact tests and permeations measurements before and after a cyclic thermal aging process. The aging only lead to slight changes of mechanical properties due to post-crystallization, but to a significant decrease of permeation properties. This decrease was contributed to weakened, amorphous regions where chain splitting occurred. Considerable differences in properties resulted from different peroxide cross-linking times of polyethylene at the same temperature. A longer holding time at 200 °C led to an improvement in impact strength by a factor of more than three. However, the permeation properties decreased by about 50 %, indicating that peroxide cross-linking in the melt inhibited the formation of crystalline regions.


2021 ◽  
Vol 877 ◽  
pp. 27-33
Author(s):  
Ya Li Sun ◽  
Yi Hua Wen ◽  
Qing Cai Liu ◽  
Jui Chin Chen ◽  
Manual Reyes de Guzman ◽  
...  

A solution blending technique was employed to form a nanocomposite film of polyvinyl alcohol modified with carbon nanotube and zinc oxide (CNT/ZnO). The film was characterized using a tensile testing machine, X-ray diffraction, scanning electron microscopy, a contact angle device, and barrier property measurement. When the CNT/ZnO content was 1.2 phr, the results from mechanical property and water vapor permeation tests showed that the nanocomposite film had good tensile strength and water resistance. Moreover, CNT/ZnO improved the hydrophobicity of the film. CNT/ZnO/can improve the performance of PVA and is a good nanofiller of PVA. The results of this research might have the opportunity to be used as packaging film materials in the future.


Author(s):  
Timothy Marchok

AbstractMultiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center-fixing most variables and a separate scheme used for center-fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015-2017 hurricane seasons in the Atlantic and eastern Pacific Basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecast (HWRF) model. A configuration that tracks only 850 mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of eleven parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the eleven parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850 mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.


2018 ◽  
Vol 9 (4) ◽  
pp. 60 ◽  
Author(s):  
Giuseppe Cavallaro ◽  
Giuseppe Lazzara ◽  
Lorenzo Lisuzzo ◽  
Stefana Milioto ◽  
Filippo Parisi

We investigated the efficacy of several nanoclays (halloysite, sepiolite and laponite) as nanofillers for Mater-Bi, which is a commercial bioplastic extensively used within food packaging applications. The preparation of Mater-Bi/nanoclay nanocomposite films was easily achieved by means of the solvent casting method from dichloroethane. The prepared bio-nanocomposites were characterized by dynamic mechanical analysis (DMA) in order to explore the effect of the addition of the nanoclays on the mechanical behavior of the Mater-Bi-based films. Tensile tests found that filling Mater-Bi with halloysite induced the most significant improvement of the mechanical performances under traction force, while DMA measurements under the oscillatory regime showed that the polymer glass transition was not affected by the addition of the nanoclay. The tensile properties of the Mater-Bi/halloysite nanotube (HNT) films were competitive compared to those of traditional petroleum plastics in terms of the elastic modulus and stress at the breaking point. Both the mechanical response to the temperature and the tensile properties make the bio-nanocomposites appropriate for food packaging and smart coating purposes. Here, we report a preliminary study of the development of sustainable hybrid materials that could be employed in numerous industrial and technological applications within materials science and pharmaceutics.


Author(s):  
Michela Talò ◽  
Giulia Lanzara ◽  
Maryam Karimzadeh ◽  
Walter Lacarbonara

In this work, the arising of stick-slip dissipation as well as the global mechanical response of carbon nanotube (CNT) nanocomposite films are tailored by exploiting a three-phase nanocomposite. The three phases are represented by the CNTs, a polymer coating localized on the CNTs surface and a hosting matrix. In particular, a polystyrene (PS) layer coats multi-walled carbon nanotubes (MWNTs) that are randomly dispersed in a polyimide (PI) matrix. The coating phase is strongly bonded to the CNTs outer sidewalls ensuring the effectiveness of the load transfer mechanism and reducing the material damping capacity. The coating phase can be thermally-activated to modify, and in particular, decrease the CNT-matrix interfacial shear strength (ISS) thus facilitating the stick-slip onset in the nanocomposite. The ISS decrease finds its roots in a partial degradation of the coating phase and, in particular, in the formation of voids. By weakening the CNT/polymer interfacial region, a significant enhancement in the material damping capacity is observed. An extensive experimental campaign consisting of monotonic and cyclic tensile tests proved the effectiveness of this novel multi-phase material design.


Sign in / Sign up

Export Citation Format

Share Document