Theoretical and Experimental Researches Regarding the Performances of a New Type of Rotating Machine with Profiled Rotors

2012 ◽  
Vol 488-489 ◽  
pp. 1757-1761 ◽  
Author(s):  
Nicolae Băran ◽  
Despina Duminică ◽  
Daniel Besnea ◽  
Antonios Detzortzis

The paper establishes an original computation formula for the flow rate of the fluid transported by a new type of rotating machine with profiled rotors; the theoretical characteristic diagram of the machine - flow rate versus machine speed - is built. The scheme of the test stand used for performing measurements needed in order to build the experimental diagram is presented. The variation of the volumetric efficiency of the working machine in function of the machine speed is finally described.

2014 ◽  
Vol 905 ◽  
pp. 487-491
Author(s):  
Malik Hawas ◽  
Nicolae Băran ◽  
Antonio Detzortzis

In this paper the authors establish the calculus expression of the volume flow rate for a new type of working machine that can work as pump, fan or low pressure compressor.The calculation of volumetric efficiency is established for a new type of machine.The results of the experimental research on the influence of the speed on the volumetric flow rate of the machine are exposed.


2013 ◽  
Vol 694-697 ◽  
pp. 588-593
Author(s):  
Antonio Detzortzis ◽  
Nicolae Băran ◽  
Stelian Carnaru

The paper presents a new type of machine that can be used as well as working machine or as force machine. The machine consists of two purpose-machined rotors that rotate with the same speed inside a casing; relations used for the computation of machine flow rate and power are presented, as well as results of experimental researches performed for an experimental model tested on a setup.


Author(s):  
Yuchuan Zhu ◽  
Chang Liu ◽  
Yunze Song ◽  
Long Chen ◽  
Yulei Jiang ◽  
...  

In this paper, an electro-hydrostatic actuator driven by dual axial-mounted magnetostrictive material rods-based pumps (MMPs) with a new type of active rectification valve is designed in the current study. Based on flow distribution of the active rectification valve and driving energy provided by two MMPs, the actuator can output continuous and bidirectional displacement. By establishing a mathematical model of the actuating system, using simulation techniques, the change rule of hydraulic cylinder’s motion state caused by different driving signals are studied and analyzed. Test equipment platform is constructed in the laboratory to test the output characteristics and confirm the feasibility of the new concept. The experimental results indicate that the maximum flow rate can reach approximately 2.7 L·min−1, while the operating frequency is 180 Hz.


1993 ◽  
Vol 115 (2) ◽  
pp. 307-311 ◽  
Author(s):  
S. Yoshimoto ◽  
Y. Anno ◽  
M. Fujimura

This paper proposes a new type of a self-controlled restrictor which can achieve a very high bearing stiffness in hydrostatic bearings. This self-controlled restrictor employs a floating disk to control the mass flow rate of the oil entering the bearing clearance according to changes of the applied load. Furthermore, a hydrostatic bearing with this restrictor can theoretically achieve an infinite stiffness when the mass of a floating disk is assumed to be zero. The static characteristics of a rectangular hydrostatic thrust bearing with this self-controlled restrictor are theoretically and experimentally investigated. It was consequently shown that the proposed hydrostatic thrust bearing can achieve a very high stiffness (nearly infinite stiffness) in a very wide range of applied load independent of supply pressure.


2020 ◽  
Vol 17 (6) ◽  
pp. 1602-1615
Author(s):  
Xu-Yue Chen ◽  
Tong Cao ◽  
Kai-An Yu ◽  
De-Li Gao ◽  
Jin Yang ◽  
...  

AbstractEfficient cuttings transport and improving rate of penetration (ROP) are two major challenges in horizontal drilling and extended reach drilling. A type of jet mill bit (JMB) may provide an opportunity to catch the two birds with one stone: not only enhancing cuttings transport efficiency but also improving ROP by depressuring at the bottom hole. In this paper, the JMB is further improved and a new type of depressure-dominated JMB is presented; meanwhile, the depressurization capacity of the depressure-dominated JMB is investigated by numerical simulation and experiment. The numerical study shows that low flow-rate ratio helps to enhance the depressurization capacity of the depressure-dominated JMB; for both depressurization and bottom hole cleaning concern, the flow-rate ratio is suggested to be set at approximately 1:1. With all other parameter values being constant, lower dimensionless nozzle-to-throat-area ratio may result in higher depressurization capacity and better bottom hole cleaning, and the optimal dimensionless nozzle-to-throat-area ratio is at approximately 0.15. Experiments also indicate that reducing the dimensionless flow-rate ratio may help to increase the depressurization capacity of the depressure-dominated JMB. This work provides drilling engineers with a promising tool to improve ROP.


2018 ◽  
Vol 204 ◽  
pp. 06007
Author(s):  
Mohammad Mahardika

Every year, Indonesia's population increase so as energy demand. To fulfill Indonesia's energy needs, the capacity of energy production should be increased. Indonesia government has made a solution by propose 35.000 MW program to increase energy production and electrification ratio in Indonesia. An insulated area where electricity did not reach, has many problem to get electricity such as limited infrastructure, low fuel energy content, and expensive turbine. To solve these problem, multi-vane expander (MVE) can be used to extract the low energy and is cheap. MVE have many advantages such as cheap, easy to manufacture, able to operate with 2 phase, and able to low speed operation. But, the disadvantage of this type of expander is leakage. In this paper, experimental and CFD analysis of MVE are conducted. The experiment generated power of 25.7 watt with isentropic and volumetric efficiency of 11.6% and 11.7% by using operating condition of 1.5 bar, 115.6 °C, 626 rpm, and mass flow rate of 80 kg/h. The CFD model of the expander is created with the same dimension and operating conditions as experimental. The result for isentropic efficiency is inversely proportional with mass flow rate and for volumetric efficiency, power, and expander rotation are directly proportional with mass flow rate.


Author(s):  
Abolghasem Zare Shahneh

In a vessel type low power research reactor having vertical fuel plates, while circulating pump is switched off, coolant (light water) would flow by natural convection. By using conservation equations, taking into account simplifying assumptions, coolant mass flow rate through the channel can be obtained. Due to the thermal stratification effect, coolant mass flow rate through the channel is shown to decrease. The present study shows that, assuming a linear thermal stratification, the variations of coolant mass flow rate versus stratification parameter behave in a non-linear manner. The aforementioned variations decrease down to 41%.


1988 ◽  
Vol 11 (3) ◽  
pp. 186-190 ◽  
Author(s):  
N. Kabei ◽  
E. Shimemura ◽  
Y. Sakurai ◽  
K. Tsuchiya

The authors developed a portable air driving unit for an artificial heart. As the portable energy source of the driver, a commercially available Ni-Cd battery was used. A linear compressor was selected as a portable size compressor. To reduce the number of parts to be assembled, a new type of pneumatic system was employed. In this system, the pressure level was regulated by varying the output flow rate of the compressor instead of using a pressure regulator and large air reservoirs. A one-board microcomputer and pressure sensors were used to control the pressure level. The total weight of the unit is 9.5 Kg. After assembling the components into the portable unit, a blood pump was connected to examine the output characteristics of the system. It was confirmed that the unit could drive the blood pump continuously for more than 2 hours under the following conditions: output flow rate of the blood pump = 5 L/min and output pressure — 100 mmHg.


2012 ◽  
Vol 463-464 ◽  
pp. 1678-1681
Author(s):  
Nicolae Băran ◽  
Despina Duminică ◽  
Daniel Besnea

The paper presents the constructive solution and the functioning principle of a new type of rotating motor that integrates an energy cogeneration plant. Mechanical power developed by the motor and the steam flow rate needed for the driving of the rotating motor are computed. Finally, there are determined the constructive and functional parameters of this type of motor, that represents the purpose of a scientific research contract in 2011.


1988 ◽  
Vol 110 (4a) ◽  
pp. 885-893 ◽  
Author(s):  
M. Epstein

This paper describes an experimental study of the phenomenon of buoyancy-driven exchange (countercurrent) flow through openings in a horizontal partition. A density-driven exchange flow was obtained by using brine above the partition and fresh water below the partition. In the first part of the study, flow measurements were made with a single opening, for opening ratios L/D in the range 0.01 to 10.0, where L and D are the length of the opening (in the direction normal to the partition) and the diameter of the opening, respectively. Four different flow regimes are identified as L/D is increased through this range. As a result of the competition between two of these regimes, the exchange flow rate versus L/D relation exhibits a peak. The exchange flow rate was found, for all practical purposes, to be independent of viscosity, enabling a universal correlation between Froude number (dimensionless exchange flow rate) and L/D. The second part of the study was an experimental investigation of the same phenomenon, but with two openings in the horizontal partition. Two openings were observed to give rise to three different flow configurations involving both one-way and countercurrent flows within the openings.


Sign in / Sign up

Export Citation Format

Share Document