Research on CAN Bus of Pure Electric Vehicles Based on SAEJ1939

2012 ◽  
Vol 512-515 ◽  
pp. 2650-2656
Author(s):  
Jin Rui Nan ◽  
Shu Chao Cui ◽  
Zhi Chai

The use of CAN bus network on electric vehicles is of great significance, it can not only greatly reduce the costs of electric vehicles, but also increase the driving distance of electric vehicles. The stability of CAN bus load rate and CAN network communication rate plays a vital role to the CAN network,by studying and making use of SAEJ1939, this paper develops a vehicle network topology, then through calculating the bit rate of transfer time to calculate the load rate, combined with using the software named CANoe from the Vector company in Germany to analyse and simulate the sending cycle of each CAN bus node on pure electric vehicles. In this way,this paper analyses the reasonableness of CAN network design of the vehicle body. Finally this paper applies the on-site verification to prove the reliability of simulation results. This study is based on SAEJ1939 agreement CAN2.0B, did not make a study for CAN2.0A, so there are limitations, the findings may not apply to CAN2.0A.

2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


2013 ◽  
Vol 427-429 ◽  
pp. 1678-1681
Author(s):  
Liang He ◽  
Jin Rui Nan ◽  
Cheng Lin

With the mass production of Electric Vehicles, end of line test of Electric Vehiles has become an important research topic.In this paper, a scheme of the system with a portable computer is establish for thepractical application to the end of line test based on CAN bus, and then design and research of the testing system software are followed. To develop establish the system scheme, we study in depth and explore test methods and management, and design two test modes in view of the practicality and re-usability of the test system. In the process of system software development, we program in LabVIEW, manage the test items in NI TestStand, make a research and optimization of Microsoft Office Access database connection for both software, and design user interface program of database maintenance and management finally. Commissioning not only verifies practical performance of the test system in the aspects of testing, data processing and others, but also feedbacks the reference information to enhance and improve the stability and re-usability of the system based on CAN bus.


2013 ◽  
Vol 791-793 ◽  
pp. 1819-1823
Author(s):  
Xi Chen ◽  
Jian Wu ◽  
Yang Zhao ◽  
Hong Tao Bai

In the design of CAN network system, as CAN bus topology will affect network performance and cost, it is important to optimize the network topology. This paper analyzes the CAN busload based on CAN protocol, calculates the upper limit of transmission message frames in a single CAN bus. As the amount of information on the bus is increasing, a single CAN bus cannot meet the communication requirements, we put forward dividing the network into multiple homogeneous segments via multi-objective optimization method, developing a genetic algorithm strategy and solving the problem in a MATLAB platform. Finally utilize the method to design a pure electric vehicle network topology.


2018 ◽  
Vol 7 (3.13) ◽  
pp. 22
Author(s):  
Abdelaziz Sahbani ◽  
. .

This paper deals with a detailed dynamic design of traction control strategies based on fuzzy logic controller. The proposed system is motorized by two independent DC motors associated with two static DC converters and an electrical differential. An approach to both longitudinal and lateral controls of two wheels is described. In fact, by using electric motors, it is possible to have a torque control in each wheel drive, enabling the implementation of a traction control. Consequently, the stability and the safety of the vehicle will be improved. Obtained simulation results confirm the efficiency of the proposed controller. 


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2510
Author(s):  
Konrad Górny ◽  
Piotr Kuwałek ◽  
Wojciech Pietrowski

The article proposes a proprietary approach to the diagnosis of induction motors allowing increasing the reliability of electric vehicles. This approach makes it possible to detect damage in the form of an inter-turn short-circuit at an early stage of its occurrence. The authors of the article describe an effective diagnostic method using the extraction of diagnostic signal features using an Enhanced Empirical Wavelet Transform and an algorithm based on the method of Ensemble Bagged Trees. The article describes in detail the methodology of the carried out research, presents the method of extracting features from the diagnostic signal and describes the conclusions resulting from the research. Phase current waveforms obtained from a real object as well as simulation results based on the field-circuit model of an induction motor were used as a diagnostic signal in the research. In order to determine the accuracy of the damage classification, simple metrics such as accuracy, sensitivity, selectivity, precision as well as complex metrics weight F1 and macro F1 were used.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 325 ◽  
Author(s):  
Shijun Chen ◽  
Huwei Chen ◽  
Shanhe Jiang

Electric vehicles (EVs) are designed to improve the efficiency of energy and prevent the environment from being polluted, when they are widely and reasonably used in the transport system. However, due to the feature of EV’s batteries, the charging problem plays an important role in the application of EVs. Fortunately, with the help of advanced technologies, charging stations powered by smart grid operators (SGOs) can easily and conveniently solve the problems and supply charging service to EV users. In this paper, we consider that EVs will be charged by charging station operators (CSOs) in heterogeneous networks (Hetnet), through which they can exchange the information with each other. Considering the trading relationship among EV users, CSOs, and SGOs, we design their own utility functions in Hetnet, where the demand uncertainty is taken into account. In order to maximize the profits, we formulate this charging problem as a four-stage Stackelberg game, through which the optimal strategy is studied and analyzed. In the Stackelberg game model, we theoretically prove and discuss the existence and uniqueness of the Stackelberg equilibrium (SE). Using the proposed iterative algorithm, the optimal solution can be obtained in the optimization problem. The performance of the strategy is shown in the simulation results. It is shown that the simulation results confirm the efficiency of the model in Hetnet.


2021 ◽  
Vol 13 (7) ◽  
pp. 3744
Author(s):  
Mingcheng Zhu ◽  
Shouqian Li ◽  
Xianglong Wei ◽  
Peng Wang

Fishbone-shaped dikes are always built on the soft soil submerged in the water, and the soft foundation settlement plays a key role in the stability of these dikes. In this paper, a novel and simple approach was proposed to predict the soft foundation settlement of fishbone dikes by using the extreme learning machine. The extreme learning machine is a single-hidden-layer feedforward network with high regression and classification prediction accuracy. The data-driven settlement prediction models were built based on a small training sample size with a fast learning speed. The simulation results showed that the proposed methods had good prediction performances by facilitating comparisons of the measured data and the predicted data. Furthermore, the final settlement of the dike was predicted by using the models, and the stability of the soft foundation of the fishbone-shaped dikes was assessed based on the simulation results of the proposed model. The findings in this paper suggested that the extreme learning machine method could be an effective tool for the soft foundation settlement prediction and assessment of the fishbone-shaped dikes.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Yanyan Wang ◽  
Lin Wang ◽  
Ruijuan Zheng ◽  
Xuhui Zhao ◽  
Muhua Liu

In smart homes, the computational offloading technology of edge cloud computing (ECC) can effectively deal with the large amount of computation generated by smart devices. In this paper, we propose a computational offloading strategy for minimizing delay based on the back-pressure algorithm (BMDCO) to get the offloading decision and the number of tasks that can be offloaded. Specifically, we first construct a system with multiple local smart device task queues and multiple edge processor task queues. Then, we formulate an offloading strategy to minimize the queue length of tasks in each time slot by minimizing the Lyapunov drift optimization problem, so as to realize the stability of queues and improve the offloading performance. In addition, we give a theoretical analysis on the stability of the BMDCO algorithm by deducing the upper bound of all queues in this system. The simulation results show the stability of the proposed algorithm, and demonstrate that the BMDCO algorithm is superior to other alternatives. Compared with other algorithms, this algorithm can effectively reduce the computation delay.


2011 ◽  
Vol 58-60 ◽  
pp. 1018-1024
Author(s):  
Feng Ye ◽  
Gui Chen Xu ◽  
Di Kang Zhu

This paper reviews several current methods of calculating buffer on the basis of pointing out each merits and pitfalls and then introduces Bayesian statistical approach to CCS / BM domain to calculate the size of the project buffer, to overcome that the current method of the buffer calculation is too subjective and the defect on lacking of practical application. In Crystal Ball, we compare the simulation results of implementation process on the benchmark of C&PM, RESM and SM. The results show that the buffer using this method can ensure the stability of the project’s completion probability, and this method has great flexibility.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document