Numerical Simulation of SiO2 Fouling While Evaporating High Concentration Extracted Oil Wastewater

2012 ◽  
Vol 518-523 ◽  
pp. 3231-3235
Author(s):  
Long Sheng Zou ◽  
De Zhen Chen ◽  
Wei Guo Zhou

This article aims at fouling situation while extracted oil wastewater evaporating and has analyzed the change process in wastewater SiO2. We point out influence of the formation of fouling SiO2pre-condition—supersaturation and establish SiO2crystallization precipitation model and equation. The results show that concentration ratio and evaporation temperature increase to help fouling formation to give rise to fouling heat resistance elevating. The increase of extracted oil wastewater flow rate loop reduce the fouling heat resistance and improve the efficiency of heat utilize. Through simulation , we master main influencing factors of fouling heat resistance and grain a good foundation to design the experiment scheme in the future.

2020 ◽  
Vol 71 (6) ◽  
pp. 413-418
Author(s):  
Xue Yang ◽  
Rui Liu ◽  
Lu Li ◽  
Zhifu Yin ◽  
Kai Chen ◽  
...  

AbstractEHD (Electrohydrodynamic) printing is a promising technique for alternative fabrication of highresolution micro- and nanostructures without employment of any molds or photo-masks However, the printing precision can be easily influenced by the printing conditions, such as applied voltage, printing distance (the distance between the nozzle tip and the substrate), and flow rate. Unfortunately, up to now there was no work which analyzed those influencing factors in-depth and systematically by theory and numerical simulation. In this paper, the theory of EHD printing was presented and the effect of applied voltage, printing distance, and flow rate on the width of printed line was analyzed by numerical simulation. The simulation results showed that the width of printed lines is proportional to printing distance, nozzle size, and flow rate. However, it is inversely proportional to the applied voltage.


Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Author(s):  
Lingjiu Zhou ◽  
Zhengwei Wang ◽  
Yongyao Luo ◽  
Guangjie Peng

The 3-D unsteady Reynolds averaged Navier-tokes equations based on the pseudo-homogeneous flow theory and a vapor fraction transport-equation that accounts for non-condensable gas are solved to simulate cavitating flow in a Francis turbine. The calculation results agreed with experiment data reasonably. With the decrease of the Thoma number, the cavity first appears near the centre of the hub. At this stage the flow rate and the efficiency change little. Then the cavity near the centre of the hub grows thick and the cavities also appear on the blade suction side near outlet. With further reduce of the Thoma number the cavitation extends to the whole flow path, which causes flow rate and efficiency decrease rapidly.


Author(s):  
Yoshiyuki Iso ◽  
Xi Chen

Gas-liquid two-phase flows on the wall like liquid film flows, which are the so-called wetted wall flows, are observed in many industrial processes such as absorption, desorption, distillation and others. For the optimum design of packed columns widely used in those kind of processes, the accurate predictions of the details on the wetted wall flow behavior in packing elements are important, especially in order to enhance the mass transfer between the gas and liquid and to prevent flooding and channeling of the liquid flow. The present study focused on the effects of the change of liquid flow rate and the wall surface texture treatments on the characteristics of wetted wall flows which have the drastic flow transition between the film flow and rivulet flow. In this paper, the three-dimensional gas-liquid two-phase flow simulation by using the volume of fluid (VOF) model is applied into wetted wall flows. Firstly, as one of new interesting findings in this paper, present results showed that the hysteresis of the flow transition between the film flow and rivulet flow arose against the increasing or decreasing stages of the liquid flow rate. It was supposed that this transition phenomenon depends on the history of flow pattern as the change of curvature of interphase surface which leads to the surface tension. Additionally, the applicability and accuracy of the present numerical simulation were validated by using the existing experimental and theoretical studies with smooth wall surface. Secondary, referring to the texture geometry used in an industrial packing element, the present simulations showed that surface texture treatments added on the wall can improve the prevention of liquid channeling and can increase the wetted area.


2012 ◽  
Vol 535-537 ◽  
pp. 1100-1103 ◽  
Author(s):  
Wei Xiao Liao ◽  
Jun Song ◽  
Bo Wen Cheng ◽  
Jie Mei

Lithium salts were dissolved in ionic liquid [Amim]Cl, and their dissolution behavior were tested by turbidimeter. It is found that the solubility of LiCl in [Amim]Cl is up to 14g/100g [Amim]Cl at 70°C, and it keeps growing as the temperature increase. Turbidity of cellulose solution in [Amim]Cl at 70°C was obtained, but the solubility of high concentration cellulose solution could not be demonstrated accurately in this way. Cellulose solutions with [Amim]Cl or [Amim]Cl/lithium salts as solvents at different temperature were obtained, in which the lithium salts were 1wt%(mass fraction of [Amim]Cl), polarization microscope was used to observe the dissolution behavior of cellulose. The solubility of cellulose would increased as temperature rose, and the solubility of cellulose in [Amim]Cl/1wt%LiCl reached 11.9%(mass fraction of [Amim]Cl) at 80°C, which was higher than in [Amim]Cl 9.4% at 80°C. It is found that the addition of lithium salts into [Amim]Cl can really improve the solubility of cellulose than in [Amim]Cl.


2018 ◽  
Vol 168 ◽  
pp. 02001
Author(s):  
Karel Adámek ◽  
Jan Kolář ◽  
Pavel Peukert

There are many types of devices used for various purposes, called as vortex valves. The aim of this paper is the design of vortex valves, determined for controlled higher outflows from retention tanks. The paper follows the previous study of smaller sizes of vortex valves. The method of flow numerical simulation allows us to identify the reason of the two-branch operational (resistance) characteristic of the solved valves and the suitable sizes of the main valve dimensions for the given flow rate and water level.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


Sign in / Sign up

Export Citation Format

Share Document