Photocatalytic Degradation of Methyl Orange on Ce-TiO2 under Visible Light Irradiation

2012 ◽  
Vol 529 ◽  
pp. 528-531
Author(s):  
Zhi Gang Duan ◽  
Qin Yu Li ◽  
Xv Yun Zhao ◽  
Zhi Ming Peng ◽  
Shen Hua Zhang

In this article, the Ce-TiO2have been prepared by Sol-gel method to study the photocatalytic activity of Ce-TiO2photocatalyst.The effects of doping ratio on the crystal structure, Absorption spectrum and photocatalytic degradation of methylene were studied and characterized by X-ray diffraction and UV–visible spectrometer.The results indicate:with the increase of the CeO2doping content to TiO2, the absorption efficiency of the Ce-TiO2correspondingly increases. When CeO2doping content is 50%, the absorbing wavelength threshold value reaches the highest 520nm .The rate of degradation on methylene of the sample is higher than that of Degause P25 after 4h irradiated by sunshine. When the ratio is 11%, the degradation rate reaches the highest 87%. The paper systemical investigate the relationships between CeO2doping tatio, microstructure, and macro-performances of Ce-TiO2for the first time.These results provide guild for the future inductrical production of efficient photocatalyst.

2014 ◽  
Vol 881-883 ◽  
pp. 901-904 ◽  
Author(s):  
Jing Zhang ◽  
Hui Hui Zhu ◽  
Kai Chen Lei ◽  
Heng Quan

WO3doping TiO2composites with nanocarbon are prepared by sol-gel and hydrothermal, and the composites are studied by X-ray diffraction (XRD), UV-visible light scanning. The photocatalytic degradation effects of different conditions on the direct scarlet 4BS solution has been Investigated. The results show that doped WO3does not change the main structure of TiO2, but affect its crystalline properties. When WO3doping amount is 3.0 mol%, the crystallinity of composite reaches maximum value. The introduction of nanocarbon can improve the crystallinity of composite when the molar ratio of WO3doping is 3.0%, the photocatalytic activity is the highest, nanocarbon as a carrier can increase the photocatalyst adsorption capacity to achieve the objective of improving the photocatalytic efficiency when WO3and nanocarbon doped TiO2, the stability of the composite about catalytic activity is excellent.


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


2019 ◽  
Vol 13 (26) ◽  
pp. 171-177
Author(s):  
Ban M. Al-Shabander

Titanium dioxide nanorods have been prepared by sol-gel templatemethod. The structural and surface morphology of the TiO2 nanorods wasinvestigated by X-ray diffraction (XRD) and atomic force microscopy(AFM), it was found that the nanorods produced were anatase TiO2 phase.The photocatalytic activity of the TiO2 nanorods was evaluated by thephoto degradation of methyl orange (MO). The relatively higherdegradation efficiency for MO (D%=78.2) was obtained after 6h of exposedto UV irradiation.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


2014 ◽  
Vol 609-610 ◽  
pp. 250-254
Author(s):  
Ya Bin Li ◽  
Jin Tian Huang ◽  
Yan Fei Pan

In the paper, the TiO2nanomaterials adopted the microcrystalline cellulose as the template by the template method and sol-gel method was prepared. Through the infrared spectrometer (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD), the surface morphology, composition and the type of the samples were characterized respectively. The influence of the macro morphology of TiO2photocatalytic performance to use the reaction of decolorization and degradation of methyl orange as model was analyzed. The results showed that TiO2which was produced by the template of sallix fiber was Rod-shaped and the average diameter size of nanocomposite structure was 20.592 nm, which can provide a new method of producing other morphology of TiO2.


2014 ◽  
Vol 896 ◽  
pp. 541-544
Author(s):  
Is Fatimah ◽  
N. Nunani Yuyun

ZnO-SiO2/Laponite was prepared by sol-gel preparation procedure consit of SiO2 pillarization to laponite followed by ZnO dispersion by using zinc acetate as precursor. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), diffuse reflectance UV-Visible (DRUV-Vis) and N2 adsorption-desorption analysis. The photocatalytic performance of the amterial in methylene blue decolorization was also investigated. Compared with ZnO-SiO2 nanoparticles, it is concluded that ZnO-SiO2/Laponite possess higher photocatalytic activity which obey Temkin isotherm model.


2018 ◽  
Vol 34 (6) ◽  
pp. 3140-3144
Author(s):  
Ritu Vershney ◽  
Komal Chelaramani ◽  
Arpan Bhardwaj ◽  
Nayma Siddiqui ◽  
Suresh Kumar Verma

The synthesis of Ni doped titania (TiO2) nanoparticles were achieved via simple novel sol gel technique, in which Titanium-n-butoxide and NiCl2 were taken as precursors. Effect of different wt% of dopant in TiO2 was studied on photocatalytic degradation of Aniline blue and Toluidine Blue. The study suggested the increased photocatalytic degradation with increased time duration. The synthesized samples were analyzed by surface electron microscopy (SEM) and X-ray diffraction studies. The antibacterial activity was investigated against Gram-positive Staphylococcus aureus bacteriae. Studies revealed that on increasing the dopant concentration, the diameter of zone of inhibition also increased upto 1.5 wt%.


2013 ◽  
Vol 543 ◽  
pp. 63-67
Author(s):  
Jayabharathi Jayaraman ◽  
Jayamoorthy Karunamoorthy

A sensitive benzimidazole derivative fluorescent sensor for nanoparticulate ZnO has been designed and synthesized. The nanocrystalline ZnO, Ag doped ZnO and Cu doped ZnO have been synthesised by sol-gel method and characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. The synthesized sensor emits fluorescence at 360 nm and this fluorescence is selectively enhanced by nanocrystalline ZnO. This technique is sensitive to detect and estimate ZnO at micro molar level. Impurities such as Ag and Cu do not hamper the sensitivity of this technique significantly. Keywords: Sensor, SEM, EDX, Impedance, Fluorescence


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Lu ◽  
Meihuan Yao ◽  
Aiguo Zhou ◽  
Qianku Hu ◽  
Libo Wang

Ti3C2/TiO2/CuO nanocomposites were synthesized via the decomposition of a mixture of Ti3C2 (a novel two-dimensional carbide) and cupric nitrate under an argon atmosphere. The morphology and structures of the obtained samples were characterized. X-ray diffraction and energy dispersive spectrometer analysis indicate that the sample is composed of Ti3C2, anatase-TiO2, and CuO. Scanning electron microscopy images show that CuO and TiO2 nanoparticles were evenly distributed on the surface of Ti3C2. The particles size increased with an increase in the cupric nitrate content. Photocatalytic degradation of methyl orange shows that the Ti3C2/TiO2/CuO nanocomposite has good photocatalytic degradation efficiency. A possible photocatalytic mechanism of the Ti3C2/TiO2/CuO nanocomposites was proposed. The data indicated that CuO and Ti3C2 effectively promote the separation of photoelectrons from vacancies.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2300
Author(s):  
Linh Thuy Nguyen ◽  
Hanh Thi Nguyen ◽  
Khai Manh Nguyen ◽  
Thuy Thi Pham ◽  
Bart Van der Bruggen

N,S-TiO2 deposited on three kinds of pre-treated sugarcane bagasse was synthesized via a sol–gel method. The obtained composites were characterized by various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and photoluminescence spectroscopy (PL). UV-visible induced degradation of ciprofloxacin was investigated. The influence of some experimental parameters such as contact time, pH, dosage, and initial concentration on the efficiency of ciprofloxacin elimination was also evaluated. The highest efficiency was observed for the alkaline pre-treated sugarcane bagasse combined with N,S-TiO2, about 86% under optimal conditions (contact time 150-min irradiation, pH 5.5–6, dosage 0.5 g L−1, and the initial concentration CIP 30 ppm). There may be a rapid ciprofloxacin transition from the adsorption site to the photocatalytic site, and the alkaline pre-treated sugarcane bagasse/N,S-TiO2 prevented the recombining of holes and electrons of the photocatalyst. Furthermore, the alkaline pretreatment sugarcane bagasse/N,S-TiO2 composite material was sustainable, with only a 10% reduction after reusing the material three times. The presence of sugarcane bagasse made the material easy to recover from the liquid phase.


Sign in / Sign up

Export Citation Format

Share Document