Photocatalytic Activity of Pd Doped Tin Dioxide Inverse Opal Films

2012 ◽  
Vol 534 ◽  
pp. 135-140 ◽  
Author(s):  
Yang Liu ◽  
Bo Li ◽  
You Wei Yao ◽  
Jing Jing Gao ◽  
Zhen Dong Liu ◽  
...  

Inverse opal films (IOFs) of SnO2 doped with Pd were prepared by the self-assembly technique using polystyrene microsphere (PS sphere) as template in combination with a sol-gel method. The photocatalysis properties of SnO2 IOFs were estimated through measuring the rate of the degradation of methylene blue (MB). The result shows that SnO2 IOFs have good photocatalytic activity, the solution of MB was degradated over 60% in 4 hours when it was dipped in SnO2 IOFs and exposed in the UV light. The addition of Pd in SnO2 IOFs improved the photocatalytic activity of the films and the degradation of MB can exceed 80% with the same condition. This sort of SnO2 IOFs doped with Pd indicated a potential application in photocatalysis field.

2015 ◽  
Vol 1123 ◽  
pp. 227-232 ◽  
Author(s):  
Iqriah Kalim Susanto ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

Nanocomposite Fe3O4-CuO-ZnO with different molar ratio of Fe3O4:CuO:ZnO were synthesized using sol-gel method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope, UV-visible diffuse reflectance spectroscopy and vibrating sample magnetometer. The characterization results manifested that the combination of Fe3O4, CuO and ZnO nanoparticles was successful. The photocatalytic activity of nanocomposite with the molar ratio of 1:1:5 was more effective in the degradation of methylene blue under UV light irradiation than pure Fe3O4, CuO, ZnO. The role of photoactive species involved in the photocatalytic reaction was studied and found that holes play the most important role in photodegradation of methylene blue.


2011 ◽  
Vol 311-313 ◽  
pp. 1217-1221
Author(s):  
Zheng Wen Yang ◽  
Ji Zhou ◽  
Jian Bei Qiu ◽  
Zhi Guo Song ◽  
Da Cheng Zhou ◽  
...  

Inverse opal photonic crystals of Eu3+ doped LaPO4 (LaPO4: Eu)were prepared by a self-assembly technique in combination with a sol-gel method. In the preparation process, Eu3+ doped LaPO4 precursors were filled into the interstices of the opal template assembled by monodispersive polystyrene microspheres. The polystyrene template was then removed by calcination at 650 °C for 5h, meanwhile, Eu3+doped LaPO4 inverse opal photonic crystal was formed. The photoluminescence (PL) from Eu3+ doped LaPO4 inverse opal photonic crystal was studied. The effect of the photonic stop-band on the spontaneous emission of Eu3+ has been observed in the inverse opal photonic crystals of Eu3+ doped LaPO4. Significant suppression of the emission was detected if the photonic band-gap overlaps with the Eu3+ ions emission band.


2021 ◽  
Vol 78 (5) ◽  
pp. 2849-2865
Author(s):  
Bircan Haspulat Taymaz ◽  
Recep Taş ◽  
Handan Kamış ◽  
Muzaffer Can

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Zahir Muhammad ◽  
Farman Ali ◽  
Muhammad Sajjad ◽  
Nisar Ali ◽  
Muhammad Bilal ◽  
...  

Degradation of organic dyes and their byproducts by heterogeneous photocatalysts is an essential process, as these dyes can be potentially discharged in wastewater and threaten aquatic and xerophyte life. Therefore, their complete mineralization into nontoxic components (water and salt) is necessary through the process of heterogeneous photocatalysis. In this study, Zr/CrO2 (Zirconium-doped chromium IV oxide) nanocomposite-based photocatalysts with different compositions (1, 3, 5, 7 & 9 wt.%) were prepared by an environmentally friendly, solid-state reaction at room temperature. The as-prepared samples were calcined under air at 450 °C in a furnace for a specific period of time. The synthesis of Zr/CrO2 photocatalysts was confirmed by various techniques, including XRD, SEM, EDX, FT-IR, UV-Vis, and BET. The photocatalytic properties of all samples were tested towards the degradation of methylene blue and methyl orange organic dyes under UV light. The results revealed a concentration-dependent photocatalytic activity of photocatalysts, which increased the amount of dopant (up to 5 wt.%). However, the degradation efficiency of the catalysts decreased upon further increasing the amount of dopant due to the recombination of holes and photoexcited electrons.


2019 ◽  
Vol 56 ◽  
pp. 152-157 ◽  
Author(s):  
Abdelouahab Noua ◽  
Hichem Farh ◽  
Rebai Guemini ◽  
Oussama Zaoui ◽  
Tarek Diab Ounis ◽  
...  

Nickel oxide (NiO) thin films were successfully deposited by sol-gel dip-coating method on glass substrates. The structural, morphological and optical properties in addition to the photocatalytic activity of the prepared films were investigated. The results show that the films have a polycrystalline NiO cubic structure with dense NiO grains and average optical transmittance in the visible region. The photocatalytic properties of the films were studied through the degradation of methylene blue and 89% of degradation was achieved for 4.5h of solar light irradiation exposure which indicates the capability of NiO photocatalytic activity.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


2013 ◽  
Vol 668 ◽  
pp. 13-16
Author(s):  
Qing Shan Li ◽  
Biao Zhan ◽  
Wei Hong ◽  
Guang Zhong Xing

Opal as a carrier, tetrabutyl titanate as a titanium source, TiO2 loaded on opal was prepared by sol-gel technique. The photocatalysts were characterized by XRD, TEM and UV-VIS absorption spectrum. Their photocatalytic activities were examined by the photocatalytic decolorization of methylene blue solution under UV light irradiation. The effects of calcination temperature, the amount of TiO2 loading and pH on photocatalytic activities were discussed. The results show that TiO2 supported on opal induced enhancement of photocatalytic decolorization rant and TiO2 doping is about 30 wt. % with 92.15% of decolorization rate at 700°C.


Author(s):  
Thế Luân Nguyễn ◽  
Tiến Khoa Lê ◽  
Châu Ngọc Hoàng ◽  
Hữu Khánh Hưng Nguyễn ◽  
Thị Kiều Xuân Huỳnh

The Cu doped ZnO photocatalysts were prepared on ZnO substrate modified with copper nitrate by thermal shock method with different ratio % molar Cu : Zn = 0.3, 0.5, 1.0, 2.0 and 5.0 in order to study the impacts of copper content on the photocatalytic activity of ZnO under both UV and Vis light irradiation. The crystal structure, morphology bulk and surface were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were studied via time-dependent degradation of methylene blue in aqueous solution. The results exhibit that crystal structure and morphology of Cu doped ZnO photocatalysts is not modified significally than ZnO original but surface charateristicschanged greatly. The photocatalyst was doped with copper content under 2% showed formation of Cu species. These samples perform photocatalytic activity higher than ZnO. The CuNZO-0.05-500 had the highest rate constants for methylene blue degradation (kUV = 6,901 h-1, kVIS = 0,224 h-1), which are about 2.2 times and 1.3 times higher than unmodified ZnO under UV light and Vis light, respectively. However, the CuNZO-5.0-500 which had the formation of CuO phase and unchangeable ZnO's surface has photocatalytic activity similar to pure ZnO.


2018 ◽  
Vol 762 ◽  
pp. 278-282
Author(s):  
Anzelms Zukuls ◽  
Gundars Mežinskis ◽  
Aigars Reinis ◽  
Ingus Skadins ◽  
Juta Kroica ◽  
...  

Prepared and heat-treated sol-gel ZnO-TiO2 coatings onto microscope glass slides were characterised by atomic force microscopy (AFM), scanning electron microscopy (SEM), as well as absorption spectra of light has been obtained. Thermally treated xerogels were characterised by X-ray diffraction (XRD). As well as their photocatalytic activity using methyl orange (MO) and observing the colour changes over the time in visible light (VIS) and ultra violet (UV) light has been determined. The influence of ZnO concentration on morphology, photocatalytic activity and antibacterial properties of coatings was analysed. The growth of S. epidermidis on the surface of the samples was inhibited due to photocatalytic properties of coatings.


2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


Sign in / Sign up

Export Citation Format

Share Document