Study on Cyclic Load Creep Test of the Nickel-Based Super Alloy K403

2012 ◽  
Vol 535-537 ◽  
pp. 969-972
Author(s):  
Xiang Rong Ning ◽  
Xian Xin Cai ◽  
Lu Yi ◽  
Wei Chen

A creep test of the Nickel-based superalloy K403 is performed and the test result shows that the creep deformation under the cyclic load is larger than that under the static load distinctly, which can provide references for the creep deformation analysis of the engine hot parts.

2016 ◽  
Vol 849 ◽  
pp. 513-519
Author(s):  
Qing Quan Zhang ◽  
Ming Yang Li ◽  
Ran Wei ◽  
Hui Yun Wu ◽  
Zhen Rui Li

Ni-Cr-Co type Nickel-based super alloy Inconel 740H was studied. The effect of Nb, Al and Ti on the equilibrium of this alloy was analyzed by JMatPro software. The amount of Ti and Nb should be controlled by 1.50wt.%, and meanwhile, Al should be 1.0-2.0wt.%. If Mo and W were added the amount of Mo should be in the range of 1.0-2.0wt. %, and W should be about 1.0wt.%. Based on these results, three types of new alloys were designed, which contain Ni-Cr-Co-Mo type (1#), Ni-Cr-Co-W type (2#) and Ni-Cr-Co-Mo-W type (3#). Compared with the Ni-Cr-Co type Inconel 740H alloy, the room temperature strength, high temperature strength and high temperature durable performance of the three new alloys improved, which can provide the evidence and reference to optimize the chemical composition of Inconel 740H alloy, i.e., adding 1.50wt.% Mo and 1.0wt.% W individually or together.


2005 ◽  
Vol 127 (6) ◽  
pp. 934-945 ◽  
Author(s):  
Jason Potratz ◽  
Jingzhou Yang ◽  
Karim Abdel-Malek ◽  
Esteban Peña Pitarch ◽  
Nicole Grosland

This paper presents the design and prototyping of an inherently compliant lightweight hand mechanism. The hand mechanism itself has 15 degrees of freedom and five fingers. Although the degrees of freedom in each finger are coupled, reducing the number of independent degrees of freedom to 5, the 15 degrees of freedom of the hand could potentially be individually actuated. Each joint consists of a novel flexing mechanism that is based on the loading of a compression spring in the axial and transverse direction via a cable and conduit system. Currently, a bench top version of the prototype is being developed; the three joints of each finger are coupled together to simplify the control system. The current control scheme under investigation simulates a control scheme where myoelectric signals in the wrist flexor and extensor muscles are converted in to x and y coordinates on a control scheme chart. Static load-deformation analysis of finger segments is studied based on a 3-dimensional model without taking the stiffener into account, and the experiment validates the simulation.


2007 ◽  
Vol 13 (S02) ◽  
Author(s):  
L Kovarik ◽  
G Viswanathan ◽  
R Unocic ◽  
PM Sarosi ◽  
M Mills

2020 ◽  
Vol 27 (08) ◽  
pp. 1950197
Author(s):  
X. L. LEI ◽  
B. X. YANG ◽  
Y. HE ◽  
F. H. SUN

This study is focused on the tribological properties of micro- and nano-crystalline diamond (MCD and NCD), non-hydrogenated and hydrogenated diamond-like carbon (DLC and DLC-H) and nitrogen-based (CrN, TiN and TiAlN) coatings sliding against the super alloy Inconel 718, in terms of the maximal and average coefficients of frictions (COFs), the worn morphologies and the specific wear rates, by the rotating ball-on-plate configuration under dry condition. The results show that the nitrogen-based films show comparable COFs and wear rates with the WC–Co substrates. The DLC and DLC-H show lower COFs compared with the nitrogen-based films. Furthermore, their wear resistance is limited due to their low thickness compared with MCD and NCD, which have the same elemental composition. The DLC-H coating exhibits much lower wear rate compared with the DLC coating, which may be derived from the passivation of dangling bonds by the linking of H to C atoms. The MCD and NCD films show the lowest average COFs and mild wear after tribotests, due to their high hardness and low adhesive strength between pure diamond and the super alloy. Among all the tested films, the NCD film-based tribopair presents the lowest maximal and average COFs, tiny wear debris particles, mild wear of ball and plate without scratching grooves, indicating that the NCD film may be suitable to be deposited on cutting tools for super alloy machining.


1996 ◽  
Vol 11 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Sang-Young Yoon ◽  
Takashi Akatsu ◽  
Eiichi Yasuda

Compressive creep deformation of hot-pressed silicon nitride with different amounts of grain boundary glassy phase was investigated at 1300–1400 °C under 30–100 MPa. The stress exponent of the creep rate was determined to be nearly unity. The apparent activation energy of silicon nitride with a larger amount of glassy phase was measured to be about 700 kJ/mole, and that with a smaller amount of glassy phase was found to be 400 kJ/mole. In addition, the microstructural observation found that no cavity appeared and grain boundary glass was recrystallized during creep test. Thus, the rate-limiting steps in solution/precipitation creep mechanism change from the solution-reprecipitation of Si3N4 grains to the diffusion through the grain boundary with increasing the amount of glassy phase.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Bin Yang ◽  
Fu-Zhen Xuan ◽  
Wen-Chun Jiang

Abstract Low stress interrupted creep test, as an interim compromise, can provide essential data for creep deformation design. However, there are no clear guidelines on the characterization of the terminating time for interrupted low-stress creep test. To obtain a suitable terminating time in terms of economy and effectiveness, long-term creep strain data of 9%Cr steels are collected from literatures and their creep deformation characterization is analyzed. First, the variations of normalized time and strain of each creep stage with the stress level are discussed. Then, the effect of the terminating time on final fitted results of Norton–Bailey equation is estimated. Third, the relationship between demarcation points at different creep stages and minimum/steady-state creep rate is analyzed. The results indicate that when the creep rupture life is considered as an important factor for creep design, the tertiary creep stage is of greatest significance due to the largest life fraction and creep strain fraction at low stress level. However, the primary and secondary creep stages are of great significance for design due to their larger contribution to 1% limited creep strain. And the long-term secondary creep data could be extrapolated by combining the primary creep strain data obtained from interrupted creep tests with the time to onset of tertiary creep derived from a similar Monkman–Grant relationship.


Author(s):  
F. J. Tallavo ◽  
M. D. Pandey ◽  
M. Jyrkama ◽  
N. C. Christodoulou ◽  
G. A. Bickel ◽  
...  

A key element of the fuel channel life cycle management in CANDU® nuclear reactors is to prevent contact between the pressure tube (PT) and the calandria tube (CT) in a fuel channel. By preventing PT-CT contact, the development of hydride blisters and delayed hydride cracking of the PT can be avoided. The PT-CT contact is a result of in-reactor deformation due to irradiation induced creep of the fuel channel assembly. Excessive sagging of the PT can also interfere with the free passage of the fuel bundles when the channel is refueled. Contact of the CT with reactor control mechanisms located horizontally between the fuel channels can result from excessive sag of the CT. The prediction of dimensional changes due to in-reactor creep and the time of PT-CT contact is calculated using finite element modeling of the fuel channel with appropriate creep constitutive laws describing PT and CT deformation. The three-dimensional nature of creep deformation of fuel channels can be approximated by a one-dimensional finite element model (1D-FEM), which is a computationally tractable problem. However, the simplifications of a 1D-FEM model come at the expense of loss of prediction accuracy. This paper compares creep deformation analysis of fuel channels using 1D-FEM and 3D-FEM models. The comparison is based on PT and CT sag profiles as well as on PT-CT gap at different time intervals during service of the fuel channel. Results from the comparative analysis show that the 1D-FEM model predicts greater values of PT-CT gap. The difference in gap predicted between both FEM models increases rapidly when the minimum gap is located in the outlet span. At 250,000 equivalent full power hours, the 1D-FEM model overestimate the gap by 1.12 mm with respect to the 3D-FEM model.


Sign in / Sign up

Export Citation Format

Share Document