Extrusion Foaming System for Fabricating Open-Cell Structure of Low Density Polyethylene (LDPE)

2012 ◽  
Vol 550-553 ◽  
pp. 891-896
Author(s):  
Dong Won Jung ◽  
Dong Hong Kim ◽  
Bong Chun Kim ◽  
E. K. Lee ◽  
J. C. Park ◽  
...  

Low Density Polyethylene (LDPE) foam of open-cell type was manufactured through extrusion foaming system using a physical blowing agent for the application of sound absorption. For the purpose of enhancing the open cell content, salt powder was blended with LDPE changing the content and particle size. Scanning electron microscopy (SEM) analysis was carried out in order to observe the cell morphology. With a view to characterizing the open-cell structure, open-cell content and expansion ratio were measured with extruded foams. Finally the effect of formulation and processing parameters on cell morphology was investigated.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1094
Author(s):  
Bastian Klose ◽  
Daniel Kremer ◽  
Merve Aksit ◽  
Kasper P. van der Zwan ◽  
Klaus Kreger ◽  
...  

Polystyrene foams have become more and more important owing to their lightweight potential and their insulation properties. Progress in this field is expected to be realized by foams featuring a microcellular morphology. However, large-scale processing of low-density foams with a closed-cell structure and volume expansion ratio of larger than 10, exhibiting a homogenous morphology with a mean cell size of approximately 10 µm, remains challenging. Here, we report on a series of 4,4′-diphenylmethane substituted bisamides, which we refer to as kinked bisamides, acting as efficient supramolecular foam cell nucleating agents for polystyrene. Self-assembly experiments from solution showed that these bisamides form supramolecular fibrillary or ribbon-like nanoobjects. These kinked bisamides can be dissolved at elevated temperatures in a large concentration range, forming dispersed nano-objects upon cooling. Batch foaming experiments using 1.0 wt.% of a selected kinked bisamide revealed that the mean cell size can be as low as 3.5 µm. To demonstrate the applicability of kinked bisamides in a high-throughput continuous foam process, we performed foam extrusion. Using 0.5 wt.% of a kinked bisamide yielded polymer foams with a foam density of 71 kg/m3 and a homogeneous microcellular morphology with cell sizes of ≈10 µm, which is two orders of magnitude lower compared to the neat polystyrene reference foam with a comparable foam density.


2016 ◽  
Vol 53 (1) ◽  
pp. 83-105 ◽  
Author(s):  
Peyman Shahi ◽  
Amir Hossein Behravesh ◽  
Ali Haghtalab ◽  
Ghaus Rizvi ◽  
Fatemeh Goharpei

In this research work, foaming behavior of selected polyethylene blends was studied in a solid-state batch process, using CO2 as the blowing agent. Special emphasis was paid towards finding a relationship between foamability and thermal and rheological properties of blends. Pure high-density polyethylene, linear low-density polyethylene, and their blends with two weight fraction levels of high-density polyethylene (10 and 25%wt.) were examined. The dry blended batches were mixed using an internal mixer in a molten state, and then the disk-shaped specimens, 1.8 mm in thickness, were produced for foaming purposes. The foaming step was conducted over a wide range of temperatures (120–170℃), and the overall expansion and cellular morphology were evaluated via density measurements and captured SEM micrographs, respectively. Three-dimensional structural images were also captured using a high resolution X-ray micro CT for different foamed samples and were compared. Rheological and DSC tests for the virgin and blends were also performed to seek for a possible correlation with the formability. Based on the results, blended polyethylene foams exhibited remarkable expansion and highly enhanced cell structure compared to pure polymers. Bulk density, as low as 0.33 g/cm3, was obtained for blends, while for the virgin high-density polyethylene  and linear low-density polyethylene, bulk density lower than 0.5 g/cm3 was not attainable. The lowest density was observed at a foaming temperature of 10–20℃ above the melting (peak) temperature obtained via DSC test. Rheological characteristics, including storage modulus and cross-over frequency value, were also found to be the indicators for the materials foaming behavior. Moreover, blends with 25% wt. of high-density polyethylene exhibited the highest expansion values over a wider range of temperature compared with 90% linear low-density polyethylene/10% high-density polyethylene.


2018 ◽  
Vol 37 (4-6) ◽  
pp. 153-168 ◽  
Author(s):  
Ouassim Hamdi ◽  
Frej Mighri ◽  
Denis Rodrigue

This work presents the production of cellular polymer films using extrusion blowing to impose biaxial stretching on the cellular structure while processing. The materials selected are linear low-density polyethylene (LLDPE) and low density polyethylene (LDPE) as the matrix, azodicarbonamide as the chemical blowing agent, and talc as the nucleating agent. The processing parameters, namely, the temperature profile, screw speed, feed rate, take-up ratio, blow-up ratio, and the matrix composition were all optimized to produce a homogeneous cellular structure with defined morphologies. The optimized films had a thickness below 300 µm, a relative density around 0.6, a cell density above 2 × 106 cells/cm3, and biaxially stretched cells with aspect ratios above 4 longitudinally and 3.8 transversally.


Sign in / Sign up

Export Citation Format

Share Document