Effect of Carbon Source Content on the Carbothermal Synthesis of AlN Powders Using a Combustion Synthesis Precursor

2012 ◽  
Vol 554-556 ◽  
pp. 526-531
Author(s):  
Ai Min Chu ◽  
Ming Li Qin ◽  
Bao Rui Jia ◽  
Hui Feng Lu

AlN powders were synthesized by carbothermal reduction method using a combustion synthesis precursor derived from aluminum nitrate (oxidizer), glucose (carbon source), and urea (fuel) mixed solution. Effects of carbon source content on the combustion temperature of solutions, the particle size and morphology of the precursors and the synthesized AlN were studied in detail. The results indicated that a regular variation in the particle size and morphology of precursors had been observed with the increasing molar ratio of glucose to aluminum nitrate (C/Al). The products prepared with (C/Al=8–12), calcined at 1500 oC for 2 h, could have completed the nitridation reaction, while the nitridation products prepared with (C/Al=4 and 16) are opposite. The nitridation products prepared with (C/Al=8–12), calcined at 1500 oC for 2 h, are comprised of well-distributed spherical particles of AlN with the average size ranging from 50 to 80 nm.

2006 ◽  
Vol 61 (12) ◽  
pp. 1566-1572 ◽  
Author(s):  
Dongsheng Li ◽  
Sridhar Komarneni

Platinum nanoparticles and nanorods were synthesized by microwave-assisted solvothermal techniques. Changing the reaction conditions controlled particle size and morphology. The effects of the reaction conditions, such as the molar ratio of the polyvinylpyrrolidone (PVP) repeating unit to the metal sources, the concentration of metal sources, the reaction temperature, and the presence of distilled water were investigated. Nanoparticles of Pt were approximately 3 nm in size. Produced nanoparticles and nanorods were characterized by transmission electron microscopy. Image JTM software was used to calculate the particle size and size distribution.


2007 ◽  
Vol 121-123 ◽  
pp. 571-578 ◽  
Author(s):  
Hullathy Subban Ganapathy ◽  
H.S. Hwang ◽  
Yeong Tae Jeong ◽  
Jung Teag Kim ◽  
Chang Sik Ju ◽  
...  

Rapid Expansion of Supercritical carbon dioxide Solutions (RESS) containing CO2-soluble, fluorinated ester substituted polythiophene: poly[2-(3-thienyl)acetyl ,3,4,4,5,5,6,6- 7,7,8,8,8,tridecafluoro-1-octanate] (PSFTE) through a small heated micro-orifice (150 .m) produces nanoparticles in the size range of 50 - 300 nm. Pre-expansion temperatures and pressures were found to have marked impact on particle size and morphology. While the particle size increased with more agglomeration with increase in temperature, smaller and spherical particles were produced with increase in pressure owing to the higher solubility of PSFTE in CO2 at high pressures.


RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13331-13340 ◽  
Author(s):  
T. N. Ng ◽  
X. Q. Chen ◽  
K. L. Yeung

Flow-synthesis of mesoporous silica allows deliberate and precise control over the size and shapes and enables the preparation of complex microstructures (i.e., hollow spheres).


2010 ◽  
Vol 123-125 ◽  
pp. 611-614 ◽  
Author(s):  
Yu Ping Tong ◽  
Rui Zhu Zhang ◽  
Shun Bo Zhao ◽  
Chang Yong Li

Well-dispersed fluorite Er2Zr2O7 nanocrystals have been successfully prepared by a convenient salt-assistant combustion method. The effects of calcinations temperature and salt category on the characteristics of the products were investigated by XRD and TEM. The thermal treatment temperature has an important effect on crystal size and lattice distortion of the nanocrystals. The experiment showed that the introduction of salt in the combustion synthesis process resulted in the formation of well-dispersed Er2Zr2O7 nanocrystals. The average size was 30 nm and was in agreement with the XRD result, which indicated that the nanocrystals were uniform in particle size distribution. Moreover, the possible formation process in the salt-assisted combustion synthesis was also analyzed.


2021 ◽  
Vol 11 (14) ◽  
pp. 6578
Author(s):  
Aleksandra Jedlińska ◽  
Alicja Barańska ◽  
Dorota Witrowa-Rajchert ◽  
Ewa Ostrowska-Ligęza ◽  
Katarzyna Samborska

This paper discusses the physicochemical properties of powders obtained by spray drying of cloudy beetroot juice, using dehumidified air in variants with or without carriers. The inlet air temperature was 130 °C or 90 °C, and the addition of the carriers was at a ratio of juice to carrier solids of 3:2. In the obtained powders, the following physicochemical properties were determined: water content and water activity, apparent density, loose and tapped density, porosity, flowability, particle size and morphology, and the content and retention of betalains. It was possible to dry cloudy beetroot juice without the use of carriers at low temperatures (90 or 130 °C). The 100% beetroot powders were characterized by satisfactory physicochemical properties, often better than those with carriers (including lower hygroscopicity and higher color saturation and yield). A lower loss of betalains was found for the powders with the addition of carriers. The best process yields were obtained for the powder without carriers at 130 °C and 90 °C.


2007 ◽  
Vol 336-338 ◽  
pp. 140-142
Author(s):  
Jun Jie Hao ◽  
Xiao Hui Wang ◽  
Shi Yun Lin ◽  
Long Tu Li

Na0.5Bi0.5TiO3 (NBT) is considered to be an excellent candidate for lead-free piezoelectric ceramics. In this study, we propose a hydrothermal method for the preparation of single phase NBT powder at relatively low treatment-temperature. The particle size and morphology of the synthesized powders were examined by SEM. The powders were further pressed into disk and sintered at 1120°C/2h in air, and its properties and microstructure were compared with traditionally prepared samples.


2014 ◽  
Vol 2 (37) ◽  
pp. 15437-15447 ◽  
Author(s):  
Aziz Abdellahi ◽  
Oncu Akyildiz ◽  
Rahul Malik ◽  
Katsuyo Thornton ◽  
Gerbrand Ceder

Using calculations based on first principles, we demonstrate that the preferred interface in singles LiFePO4 particles depends both on the particle size and morphology.


2014 ◽  
Vol 153 ◽  
pp. 130-135 ◽  
Author(s):  
V.M. Lisitsyn ◽  
D.T. Valiev ◽  
I.A. Tupitsyna ◽  
E.F. Polisadova ◽  
V.I. Oleshko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document