Study on the Structure and Performances of Kapok Textiles

2012 ◽  
Vol 573-574 ◽  
pp. 167-173
Author(s):  
Li Qin Lou

Kapok fiber has many excellent Performances. the surface and cross section of the kapok fiber were observed. These performances of the distribution of length and fineness, moisture regain, acid and alkali properties, and dyeing property were tested and compared for the kapok fiber, colored cotton fiber and white cotton fiber. The fabrics of same weave structure paramater were developed and the warmth retention property wewe tested. The results show that the surface of the kapok fiber is smooth,Cross section of the kapok fiber is round with hollow-structure. The length and fineness of the kapok fiber was lower than white cotton fiber and colored cotton fiber. The hygroscopicity and moisture guide properties of the kapok fiber was better than white cotton fiber and colored cotton fiber, the dyeing property of the kapok fiber was worse than white cotton fiber, the kapok fiber is alkali-resistance and non acid-resistant. The fabrics of the kapok fiber has better warmth retention property.

2020 ◽  
pp. 004051752093223
Author(s):  
Mengying Chen ◽  
Ting Ting Zhang ◽  
Li He ◽  
Kezuo Wang ◽  
Yiren Chen

Naturally colored cotton is a green textile material. To cultivate new colored cotton and improve its performance, we must first understand the types, composition, and formation mechanism of the pigments in colored cotton. This study aims to explore the composition and structure of cotton fiber pigments. Qualitative analyses of pigment extracts from brown cotton, green cotton, and white cotton fibers were carried out using ultraviolet spectroscopy, diagnostic agents, and liquid chromatography–mass spectrometry. The main component of cotton fiber pigments was flavonoids, and specific types of flavonoids were found in the pigments in brown cotton, green cotton, and white cotton fibers. Research on the composition of cotton fiber pigments can increase our understanding of colored cotton fibers and lay a foundation for the cultivation, planting, and development of colored cotton fibers, as well the identification of naturally colored cotton from dyed cotton.


2020 ◽  
Vol 164 ◽  
pp. 06015
Author(s):  
Kseniia Illarionova ◽  
Sergey Grigoryev

The aim of research was to characterize epiphyte micromycetes observed on variable cotton fibers accessions, to estimate the range of fiber destruction and select cotton, which were the most resistant to fungus damage. The accessions of differently colored Upland Cotton varieties (Gossypium hirsutum L.) evaluated: eleven cotton of natural green, twelve – of brown and eleven of conventional white color. Cotton plants have been grown in Sothern Federal District, RF. The fiber samples for the study were placed into a thermostat in sterile Petri dishes on moistened filter paper in order to stimulate the development of mycelium or sporulation of fungi naturally occurred on fibers. Incubation carried out in a thermostat at a +24-28 °C, humidity of 90-100% and exposed for 28 days. The samples examined with a microscope or binocular magnifier. Aspergillus ustus (Bainier), A. fumigatus Fresen., A. niger v. Tiegh., A. flavus Link, Penicillium aurantiogriseum Dierckx, P. notatum Westling, Rhizopus nigricans Ehrenb. and Alternaria alternata (Fuier) Keissler were detected. Compared with exposed white, accession of green and brown colors were significantly resistant to fungus. The mean of destruction (K) of white cotton varied up to 0.95, but colored accessions not exceeded 0.3 (initial destruction of the surface, not affecting internal fiber’s structure).


2012 ◽  
Vol 12 (spe) ◽  
pp. 57-66 ◽  
Author(s):  
Manoel Abílio de Queiroz ◽  
Levi de Moura Barros ◽  
Luiz Paulo de Carvalho ◽  
Jonas de Araújo Candeia ◽  
Edinardo Ferraz

The Northeastern region of Brazil comprises the Caatinga biome (900,000 km²) part of which is a semiarid region with rainfed and irrigated production systems. Among the successful breeding programs are cashew and cotton. The first led to a substantial increase in nut production in Ceará, Rio Grande do Norte and Piauí and the second bred a naturally colored cotton fiber, now processed in small clothing industries in Paraiba, exporting to 11 countries. In the lower-middle São Francisco valley, the previously grown onion was replaced by improved varieties, on 90% of the production area, and by industrial tomato, introduced by research in 1972, which came to be used on more than 80% of the area at the time. The participation of the private sector and continuity of breeding programs were crucial for the success. More examples of success are expected with the establishment of postgraduate courses in Agricultural Sciences in the Semiarid region.


Author(s):  
Gizem Karakan Günaydin ◽  
Ozan Avinc ◽  
Sema Palamutcu ◽  
Arzu Yavas ◽  
Ali Serkan Soydan

2011 ◽  
Vol 332-334 ◽  
pp. 173-178
Author(s):  
Li Chen ◽  
Yu Sen Liu ◽  
Wei Guo Sun ◽  
Xiao Yan Zhou

The naturally colored cotton fiber was treated by sodium hydroxide solution with different concentrations and temperatures.The surface morphology,crystalline structure, mechanical properties and color feature value of fiber after treatment were tested by SEM,XRD,electronic single fiber strength tester and Computer Color Matching meter.The results show that the longitudinal convolutions of the naturally colored cotton fiber treated by concentrated sodium hydroxide decreased or disappeared,and the fiber became nearly cylindrical or cylindrical.The crystallinity of fiber after treatment decreased,part of the celluloseⅠ changed into celluloseⅡ.The breaking strength and breaking elongation of fiber after treatment increased.The total color differences(ΔE) and value a*of fiber after treatment increased,to the contrary,value L* and value b* decreased,which leaded to that the color of fiber treated by alkali became darker.In addition,the treatment temperature had larger influence on the properties of fiber.


2019 ◽  
Author(s):  
Gao Jianfang ◽  
Shen Li ◽  
Yuan Jingli ◽  
Zheng Hongli ◽  
Su Quansheng ◽  
...  

Abstract Background The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cell after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. Results The three key genes of GhCHS , GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi , GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS , GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi , GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. Conclusion The three genes of GhCHS , GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.


2019 ◽  
Author(s):  
Gao Jianfang ◽  
Shen Li ◽  
Yuan Jingli ◽  
Zheng Hongli ◽  
Su Quansheng ◽  
...  

Abstract Background The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cell after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. Results The three key genes of GhCHS , GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi , GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS , GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi , GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. Conclusion The three genes of GhCHS , GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.


2019 ◽  
Author(s):  
Gao Jianfang ◽  
Shen Li ◽  
Yuan Jingli ◽  
Zheng Hongli ◽  
Su Quansheng ◽  
...  

Abstract Background The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cell after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. Results The three key genes of GhCHS , GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi , GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS , GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi , GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. Conclusion The three genes of GhCHS , GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianfang Gao ◽  
Li Shen ◽  
Jingli Yuan ◽  
Hongli Zheng ◽  
Quansheng Su ◽  
...  

Abstract Background The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cells after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. Results The three key genes of GhCHS, GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi, GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS, GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi, GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. Conclusion The three genes of GhCHS, GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.


2019 ◽  
Vol 9 (21) ◽  
pp. 4662 ◽  
Author(s):  
Wei Du ◽  
Danying Zuo ◽  
Houlei Gan ◽  
Changhai Yi

Kapok is a hollow fiber with a 90% hollow degree. Compared with cotton fiber, kapok fiber has excellent performances, such as good hygroscopicity, and a good warmth retention property. In this work, desized indigo kapok/cotton denim fabrics were bleached in different ways: Laser, cellulose enzyme, sodium hypochlorite, potassium permanganate and hydrogen peroxide. After bleaching, the K/S values, tensile strength, air permeability, thickness, color fastness to rubbing and the crease recovery angle of denim fabrics were measured through the spectrophotometer, tensile strength tester, air permeability tester, thickness tester, rubbing fastness tester and fabric crease elasticity tester, respectively. The surfaces of fabrics and fibers were observed by scanning electron microscopy (SEM). Results show that the kapok/cotton fabrics were color-faded after five kinds of bleaching, the K/S values of denim with laser bleaching was declined dramatically, while there was a little change in the permeability. The tensile strength and the weight of the fabrics were decreased, and cloth which was bleached with potassium permanganate was most affected. The color fastness to rubbing and the crease recovery angle of denim fabrics with laser treatment is most suitable for industrial production. In general, laser bleaching is the better way to fade the kapok/cotton denim fabrics. Meanwhile, after five kinds of bleaching, the physical properties of kapok/cotton denim fabrics were similar to those of cotton denim fabric, which indicates that kapok/cotton denim fabric is suitable for the existing industrial bleaching technology.


Sign in / Sign up

Export Citation Format

Share Document