Atomic Absorption Spectral Studies on the Removal of Lead (II) Ion by Using Synthetic Nano and Macro Fe3O4

2012 ◽  
Vol 584 ◽  
pp. 173-177
Author(s):  
Gomathinayagam Kanthimathi ◽  
Pechimuthu Kotteeswaran ◽  
Muniasamy Kottaisamy

In the present study, the application for the removal of Lead(II) ion from aqueous solution by using synthetic nano Fe3O4 with the average size of 20 nm was investigated by batch method, as a function of concentration, adsorbent dosage, contact time and pH. The equilibrium adsorption isotherm data are tested by applying both Freundlich and Langmuir isotherm models. Macro Fe3O4 was also applied for the removal of Lead(II) ion at the optimum condition of nano Fe3O4 and its efficiency was compared.

2013 ◽  
Vol 678 ◽  
pp. 7-11
Author(s):  
Gomathinayagam Kanthimathi ◽  
P. Kotteeswaran ◽  
M. Kotaisammy

In the present study, the application for the removal of Nickel (II) ion from aqueous solution by using synthetic nano Fe3O4 with the average size of 20 nm was investigated by batch method, as a function of concentration, adsorbent dosage, contact time and pH. The equilibrium adsorption isotherm data are tested by applying both Freundlich and Langmuir isotherm models.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Somayeh Rahdar ◽  
Abbas Rahdar ◽  
Mina Khodadadi ◽  
Shahin Ahmadi

Abstract The adsorption of penicillin G (PC-G) from aqueous solution by magnesium oxide (MgO) nanoparticles has been investigated. This experimental study was conducted in a laboratory scale. The effects of various operating parameters such as pH (3–11), the dosage of MgO nanoparticles (0.3–1.5 g/L), contact time (20–150 min), and concentration of PC-G (50–200 mg/L) were studied. The results showed that under optimal conditions of concentration of 50 mg/L, pH 3, MgO nanoparticles dosage of 1.5 g/L and contact time of 60 min, the maximum adsorption capacity (qm) of PC-G adsorption on MgO nanoparticles obtained was 25.66 mg/g. The process of penicillin G adsorption on MgO nanoparticles was found to depend on Langmuir (II) and Langmuir (III) adsorption isotherm models. It could be concluded that the MgO nanoparticles can be used for PC-G removal from its aqueous solution.


2014 ◽  
Vol 1051 ◽  
pp. 583-587
Author(s):  
Ling Tao ◽  
Xiao Wei Song ◽  
Jian Li Yuan ◽  
Jun Ren ◽  
Yan Zhuo Zhang

Adsorption of Cr6+ onto purified attapulgite was investigated with respect to temperature, initial concentration and contact time. The kinetics data related to the adsorption of chromium from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 20~200 mg/L, and temperature of 298~328K. The thermodynamic experiment results show that the equilibrium adsorption isotherm was closely fitted with the Langmuir model.


2012 ◽  
Vol 9 (1) ◽  
pp. 153-159 ◽  
Author(s):  
Baghdad Science Journal

Equilibrium adsorption isotherm for the removal of trifluralin from aqueous solutions using ? –alumina clay has been studied. The result shows that the isotherms were S3 according Giels classification. The effects of various experimental parameters such as contact time, adsorbent dosage, effect of pH and temperature of trifluralin on the adsorption capacities have been investigated. The adsorption isotherms were obtained by obeying freundlich adsorption isotherm with (R2 = 0.91249-0.8149). The thermodynamic parameters have been calculated by using the adsorption process at five different temperature, the values of ?H, ?G and ?S were (_1.0625) kj. mol-1, (7.628 - 7.831) kj.mol-1 and (_2.7966 - _2.9162) kg. k-1. mol-1 respectively. The kinetic study of adsorption process has been studied depending on three kinetic equations: 1- Allergen equation 2- Morris –weber eguation 3- Reichenberg eguation. In general, the result shows the isotherm were on ?- alumina according to Giels classification.? –alumina and thermodynamic


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2007 ◽  
Vol 124-126 ◽  
pp. 1781-1784 ◽  
Author(s):  
Yongju Jung ◽  
Jei Won Yeon ◽  
Ji Man Kim ◽  
Hyung Ik Lee ◽  
Seok Kim ◽  
...  

In this study, we modified the surface of nanoporous carbons with carboxymethylated polyethyleneimine (CM-PEI) of a high charge density in order to increase the Pt loading on the nanoporous carbons in an aqueous solution. We carried out equilibrium adsorption tests of Pt(IV) on the pure nanoporous carbon and the CM-PEI-coated carbons and evaluated the adsorption isotherm on the CM-PEI-coated carbon using various isotherm models. It was found that the adsorption of Pt(IV) onto the CM-PEI-coated carbons obeys the Langmuir isotherm model.


2016 ◽  
Vol 675-676 ◽  
pp. 7-10
Author(s):  
K. Chantarasunthon ◽  
Kanyakorn Teanchai ◽  
Wichian Siriprom

In this study, the experimental investigation and assessment the absorption capacity for Zn ion with Amusium Pleuronectes shell. The investigations were carried out by batch method and variables of the batch experiment include solution pH, Contact time, were determind. The mechanism of bisorption is chemisorption or/and physical adsorption was confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray Fluorescence (EDXRF). The results showed that the Amusium Pleuronectes shell has a high level of absorption capacity for Zn (II) ions. Another that result of mechanism of biosorption suggests and confirm with the result of XRD and EDXRF.


Nano LIFE ◽  
2015 ◽  
Vol 05 (03) ◽  
pp. 1542005 ◽  
Author(s):  
Lu Fan ◽  
Ling Li ◽  
Keke Sun ◽  
Lebao Mao ◽  
Keke Liang ◽  
...  

The adsorption of malachite green from an aqueous solution of magnetic Fe 3 O 4 was studied in view of the adsorption isotherm, kinetics and regeneration of the sorbent. The adsorption isotherm of MG on nano- Fe 3 O 4 composite followed the Langmuir isotherm. Adsorption kinetics was determined from the experimental data. The nano- Fe 3 O 4 can be recycled for reuse after regeneration through acetonitrile. The high adsorption capacity and excellent reusability made Fe 3 O 4 attractive for the removal of MG from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document