Nonlinear Analysis of Prestressed Cold-Formed U-Shaped Steel and Concrete Composite Beams

2012 ◽  
Vol 594-597 ◽  
pp. 749-752
Author(s):  
Jian Jun Yu ◽  
Lian Guang Wang

Cold-formed U-shaped steel and concrete composite beam is a kind of composite beam which the steel and the concrete are integrated by welding connections on the cold-formed U-shaped steel and then pouring concrete on the steel. Now, many experts and scholars have carried out many experimental research and theoretical analysis about it. But, prestressed Cold-formed U-shaped steel and concrete composite beams have not been studied. Based on the structure , the nonlinear analysis mode of prestressed cold-formed U-shaped steel and concrete composite beams is proposed, the calculating program is researched. The calculating results show that the bearing capacity of composite beam increases with the increments of thickness of steel plate and concrete strength, and the thickness of steel plate has a larger effect than the width of the flange plate of concrete, applying prestress can enhance the bearing capacity and flexural rigidity of the composite beam.

2012 ◽  
Vol 256-259 ◽  
pp. 775-778
Author(s):  
Jia Yang

Steel and concrete composite beam is a kind of composite beam which the steel and the concrete are connected by shear connectors. Now, many experts and scholars have carried out many experimental research and theoretical analysis about it. But, steel and concrete composite beams strengthened with prestressed FRP bars have not been studied. Based on the structure, the nonlinear analysis mode of steel and concrete composite beams strengthened with prestressed FRP bars is proposed, the calculating program is researched. The relationships between moment and curvature, also between load and deformation of steel and concrete composite beams strengthened with prestressed FRP bars are obtained. The results show that the moment-curvature curve and load-deformation curve of steel and concrete composite beams strengthened with prestressed FRP bars can be separated to elastic stage, elastic-plastic stage and plastic stage.


2015 ◽  
Vol 19 (4) ◽  
pp. 99-110 ◽  
Author(s):  
Piotr Szewczyk ◽  
Maciej Szumigała

Abstract This paper presents the numerical modelling of strengthening a steel-concrete composite beam. The main assumption is that the strengthening is not the effect of the state of a failure of a structure, but it resulted from the need to increase the load-bearing capacity and stiffness of the structure (for example: due to a change in the use of the object). The expected solution is strengthening without the necessity to completely unload the structures (to reduce the scope of works, the cost of modernization and to shorten the time). The problem is presented on the example of a composite beam which was strengthened through welding a steel plate to the lower flange of the steel beam. The paper describes how energy parameters are used to evaluate the efficiency of structures’ strengthening and proposes an appropriate solution.


2012 ◽  
Vol 166-169 ◽  
pp. 610-615
Author(s):  
Yong Yang ◽  
Kang An ◽  
Su Sheng Zeng ◽  
Jian Yang Xue

Based on the experiment results of five plain steel plate-light weight concrete hollow deck specimens, the design methods of the composite decks which mainly including the calculation method of the bearing capacity and calculation method of the flexural rigidity were introduced. In the paper, the bearing capacity and flexural rigidity of the composite at two orthogonal directions, which including the direction parallel to the pipes and the direction perpendicular to the pipes, were both introduced. The calculation results of the bearing capacity and middle-span deflection were in good agreement with those of the experimental results, and in the return calculation methods were verified. Therefore, the design methods and calculation methods were useful to the design of this new type composite deck.


2011 ◽  
Vol 250-253 ◽  
pp. 1275-1280
Author(s):  
Li Tang Gao ◽  
Qi Yun Shan ◽  
Tai Wei Wu

This paper presents the experimental investigation result from a composite beam strengthened by shaped-steel underpinning (CBSSU) test. There were 3 specimens with one was common R.C beam to compare and others were strengthened by shaped-steel underpinning and jointed with short welding rebars. The main emphasis in undertaking this test was to show the effect of short welding rebars in the strengthening beams and collect more detailed data on the performance of CBSSU such as load capacities, load-deformation behaviors, slipping between shaped-steel and R.C beams, stresses distribution and failure mode. The test shows that the short welding rebars was effective to improve the bearing capacity and stiffness. With limited increase in height of the beam can substantially increase the ultimate flexural capacity and flexural rigidity. The cracks of the beam can also be controlled effectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Liufeng Zhang ◽  
Yinghua Yang

In view of the characteristics of a high floor and the heavy load of logistics buildings, a partially prefabricated partially encased assembled composite beam (PPEC) is proposed in order to achieve the low cost construction of such buildings. In this research, the mechanical properties of PPEC beams were studied experimentally. The effects of the concrete strength grade, steel content, shear span ratio, and fabrication methods on the mechanical properties of the PPEC beams were analyzed. The results showed that the proposed structural form of the PPEC beams was generally feasible. Based on the test results, a practical shear formula for PPEC beams was proposed, and the calculated results were in good agreement with the test results.


2014 ◽  
Vol 919-921 ◽  
pp. 15-18
Author(s):  
Wen Yuan Liao ◽  
Dong Hua Zhou ◽  
Long Qi Li

In order to investigate the bearing behavior of composite beam with different web openings. Six composite beams were analyzed by using the finite element program ANSYS and the shape of openings was different. The results show that the shape of opening has a significant influence on the bearing capacity and deformation capacity of composite beams with web openings. Because stress concentration is relatively small, the force performance of circular web opening is more reasonable and has the largest bearing capacity and deformation capacity.


2015 ◽  
Vol 19 (5) ◽  
pp. 525-543 ◽  
Author(s):  
Guang P Zou ◽  
Pei X Xia ◽  
Xin H Shen ◽  
Peng Wang

The interface slip will appear between the steel plates and concrete while the steel–concrete–steel composite beam under loading. It may influence the mechanical properties of the composite beam. In this paper, through theoretical analysis of the steel–concrete–steel composite beam, differential equation of interface slip is established at first. By simulating the real boundary, the formulas of interface slip are calculated under uniform and arbitrary concentrated load. Then, the axial force, the sectional curvature, and deformation of composite beams are obtained. In order to validate the reliability of the theoretical analysis, the deformation of 18 samples is calculated by using the deformation formulas of steel–concrete–steel composite beam. The results are in good agreement with the experimental consequences. Through an example, the mechanical properties of composite beams (axial force, sectional curvature, and deformation) are analyzed under interfacial slip. With the decreasing of interfacial slip, axial force of upper plate increases, and sectional curvature and deflection decrease. For lower steel plate, the interfacial slip has smaller effect.


2011 ◽  
Vol 94-96 ◽  
pp. 443-449
Author(s):  
Shi Qi Cui ◽  
Jian Dong Sun ◽  
Jun Li Lv ◽  
Chun Yang

On basis of the data from tests, FE nonlinear analysis mode on the multi-planar CHS KK-joints with in-plane gap and out-of-plane overlap (KK-OPOv) was advanced and validated in terms of failure mode, ultimate bearing capacity and etc. And the adaptability is reasonable. Moreover, FE nonlinear analysis for the joint on the typical load-displacement curve, failure behavior, failure mechanism and etc was conducted. The study suggests that the multi-planar KK-OPOv joints appear mainly in the CLD1 failure mode; at the time of failure, the tube wall deformations on the chords of multi-planar KK-OPOv joints and the corresponding planar K-Gap joints are coincide with each other basically. Both of these two types of joints are of a same failure mechanism; the multi-planar parameter ζt influences, to a certain extent, the ultimate bearing capacity on joints. That is, as the overlapping ratio of the out-of-plane braces is higher (namely, the absolute value of ζt increases), the ultimate bearing capacity of the joints decreases.


2011 ◽  
Vol 99-100 ◽  
pp. 166-169
Author(s):  
Yi Min Dai ◽  
Xu Guang Yan ◽  
Jing Chen ◽  
Xiang Jun Wang

Based on the test data of twelve push-out specimens with different holes filling different materials,the paper compared and analyzed the capacity and the corresponding slip value of the stud shear connector. The results show that, as to the two different kinds of holes shape ,the strength of the stud shear connectors of square push-out specimens was huger than that of circular specimens with the same condition; the strength of stud shear connectors in steel-concrete composite structure was decided by the strength of concrete surrounding the shear in the holes, with increasing concrete strength, the strength of stud shear connectors improved greatly; The outputs of this study are very useful for further understanding of the characteristics of the stud,it is also expected that the results presented in this paper should be valuable for the design of the composite beams.


2016 ◽  
Vol 62 (2) ◽  
pp. 59-76 ◽  
Author(s):  
D. Kisała ◽  
K. Furtak

Abstract The aim of this paper is to present an assessment of the slip influence on the deflection of the steel plate-concrete composite beams, which are a new type of a design concept. The proposed method is based on the procedure included in the PN-EN 1992-1-1, which has been modified with taking into consideration interface slip. The theoretical analysis was verified by experimental studies.


Sign in / Sign up

Export Citation Format

Share Document