Co-Combustion Characteristics of Oil Shale Semi-Coke and Corn Stalk

2012 ◽  
Vol 614-615 ◽  
pp. 107-110
Author(s):  
Hong Peng Liu ◽  
Xu Dong Wang ◽  
Chun Xia Jia ◽  
Wei Zhen Zhao ◽  
Qing Wang

The combustion experiments of oil shale semi-coke and corn stalk mixtures were conducted using thermogravimetric analyzer. The results show that the advance ignition and burnout can be achieved when semi-coke is mixed with corn stalk. The influence of different blend ratios has been studied, and the combustion characteristics were obtained. Comprehensive combustion characteristics get improved with the increase of corn stalk proportion in the mixture. The interaction of mixture in the combustion process occurs mainly in 400-600oC. It can be explained that the combustion of fixed carbon in corn stalk is delayed. What is more, TG curves were simulated by Johnson-Mehl-Avrami equation. The result shows the feasibility of using Weibull distribution to simulate the TG curves of co-combustion.

2012 ◽  
Vol 614-615 ◽  
pp. 103-106
Author(s):  
Hong Peng Liu ◽  
Wei Yi Li ◽  
Xu Dong Wang ◽  
Hao Xu ◽  
Guan Yi Chen ◽  
...  

Co-combustion experiment of oil shale semi-coke and corn stalk at different blend ratios was performed using thermogravimetric analyzer. The influence of different blend ratios has been studied. The combustion characteristics are obtained under the heating rates of 20oC/min and the experimental temperature range of 40-850oC. The combustion process of the blends is divided into three stages: low-temperature stage, transition stage and high-temperature stage. With the increasing of corn stalk in the blends, the reaction of combustion mainly shifts from high-temperature stage to low-temperature stage, and there is no obvious change for the ignition temperature, but the burn out temperature comes down. The combustion kinetics parameters of the blends were analyzed using Flynn-Wall-Ozawa model. The result shows that the activation energy of the volatile matter stage increases and the activation energy of semi-coke combustion stage decreases. The combustion characteristics of the oil shale semi-coke get improved significantly with the mixture of corn stalk.


2013 ◽  
Vol 805-806 ◽  
pp. 200-207
Author(s):  
Bing Zhang ◽  
Guang Wu Lu

Under different conditions,combustion characteristics of the single biomass,the single coal and the mixture of biomass and coal were analyzed by using thermogravimetric analyzer. Combustion characteristic parameters of the sawdust,the rice husk,the rice straw and the Baisha coal of Leiyang were studied,including ignition temperature,the maximum rate of combustion temperature,the burnout temperature and so on. The experimental results show that the biomass burning temperature is lower than the Baisha coal and there are two obvious weight loss phases in the combustion process of the biomass. However,there is only one in the coal. The ignition temperature and time of the coal can be reduced ,the temperature range of the entire combustion can be extended,the coal can be burnout more well and the fuel combustion characteristic can be optimized by blending combustion. With the increase of biomass mixing proportion, the ignition temperature of mixing samples was decreased more obviously. Moreover,when the biomass particle size becomes R200,compared with R90 particle size under the same blending ratio,its ignition temperature is more lower.


Author(s):  
Irene Carolina Beltrón Vinces ◽  
Holger Eugenio Palacios Bravo ◽  
Ernesto Rosero Delgado

  the purpose of this work is to determine the energy capacity of solid biofuels (pellets) made from the mixture of lignocellulosic biomass. The residues used were peanut husk (Arachishypogaea) and corn stalk (Zea mays L.) present in different proportions in a total of five mixtures. The highest calorific value obtained (30534,89kJ / kg) was that of mixture 4 in proportions of peanut shell and corn stalk 25:75 respectively with an ash production of 9,49% and a fixed carbon content of 26,18% results that favor the efficiency of the pellet in the combustion process (Tmax = 787 ± 13°C) while the mixture 1 (100% peanut shell) obtained the lowest energy content (M1: 28191,06 kJ / kg) With the results obtained, it was determined that pellets made from mixed biomass have better properties than those manufactured by a single type of lignocellulosic residue.   Index Terms— ash, biomass, caloric power, fixed carbon, pellets.


2011 ◽  
Vol 71-78 ◽  
pp. 2006-2009
Author(s):  
Zhi Wei Wang ◽  
Ting Zhou Lei ◽  
Feng Yue ◽  
Xiao Feng He ◽  
Jin Ling Zhu

Blend fuel of corn stalk and coal was made in a series of blend ratios with corn stalk mass percent ranging from 10 to 90%. Several data were gotten by proximate analysis with considering indexes of volatile matter, fixed carbon, sulfur content, heat value and ash. The regression equations of the data were gotten through regression analysis for the relationship between blend ratios of corn stalk(BRCS) and proximate analysis data(PAD).The result showed that there was linear relation between PAD of the blend fuel and BRCS, and linear equation slope absolute value of volatile matter, fixed carbon, sulfur content, heat value and ash were 8.49,7.64,5.45,4.85,3.97, respectively. Volatile matter content increased with the increase of BRCS, and other PAD was opposites. Variation rate and variation tendency of the blend fuel PAD was gotten through proximate analysis and fitted equation, and some references may be provided for utilization of blend fuel of biomass and coal.


2011 ◽  
Vol 236-238 ◽  
pp. 441-447 ◽  
Author(s):  
Hui Xin Jin ◽  
Fu Zhong Wu ◽  
Shui E Li

The combustion characteristics of coal and biomass blends with adding adsorbing sulfur agent was investigated using thermogravimetric analyzer. The results indicated that the combustion process of the blends were similar to that of pure coal and biomass, which there were two apparent weight-loss peaks--one for volatile burning and another for char burning. The combustion stages could be divided into the dewatering period, volatilization and burning, char burning and burnout. Nevertheless, the combustion characteristics of blends varied with the biomass blending ratio and Ca/S ratio. Due to the increase of biomass blending ratio, the volatile matter content of blends increased, which leaded to the increase of peak value for volatile burning stage. In this stage, due to the lower reaction temperature, less SO2was produced and the reaction to CaO was slower. With the progress proceeding, char began to be burned and large heat was released and the adsorbing sulfur reactions were becoming stronger. Although the mass of blends reduced fastly, the mass of CaSO3and CaSO4increased compared to CaO, Which leaded to a wider temperature range of weight-loss for the char burning period. At the same linear temperature gradient, an increase of Ca/S decreased the temperature of volatilization and char burning, and the residue was increased due to more CaO additive. Therefore, the appropriate ratio of Ca/S was necessary to improve the combustion and adsorbing sulfur efficiency. In this study, a basic kinetics analysis for coal and biomass blends is provided. The kinetics parameters reveal that the combustion process of coal and biomass blends with adding absorbing sulfur agent can be described by a first order reaction equation.


2013 ◽  
Vol 448-453 ◽  
pp. 1605-1611
Author(s):  
Lin Hai Zhang ◽  
Deng Qin Xue ◽  
Jia Xi Zhang ◽  
Yu Fu ◽  
Shu Lin Hou

The mixed materials come from Beijing Daxing District, corn stalks as the main raw material, peanut shells and wheat straw as affixation. Combustion characteristics of mixed materials are studied by using Thermogravimetric analyzer and combustion dynamics studied by using Coats-Refern method to offer practical and theoretical data for crop straw combustion and Densified . Studies have shown that Combustion curve of three samples have two distinct peaks, divided into water evaporated to dryness, and the combustion of volatiles, fixed carbon combustion and burnout four basic stages and lied a larger overlapping area in the entire combustion stage, That combustion characteristics and kinetic parameters of mixed materials are influenced by adding peanut shells, and less affected on adding wheat straws.


Author(s):  
V. A. Poryazov ◽  
◽  
O. G. Glotov ◽  
V. A. Arkhipov ◽  
G. S. Surodin ◽  
...  

The goal of this research is to obtain experimental information about combustion characteristics of the composite propellant containing various metallic fuels. The propellant formulations contained two fractions of ammonium perchlorate (64.6%), inert binder (19.7%) - butadiene rubber SKD plastized with transformer oil, and metal fuel (15.7% of aluminum ASD-4, ASD-6, Alex; boron; aluminum diboride; aluminum dodecaboride; some mixtures of above listed ingredients). Experimental information will be used further as a background to develop the physical and mathematical model of combustion process.


2021 ◽  
Author(s):  
Yaoxin LIU ◽  
Enyu Wang ◽  
Ze KAN

Abstract Under the pressure of environmental problems and fossil energy shortage, countries all over the world are looking for fuel to replace fossil energy. Oil shale and rice husk are potential fuels, but they both have some problems, such as high ash content and low calorific value .In the present study,oil shale and rice husk were used as feedstock for the high quality fuel through hydrothermal approach,it provides a new way for the resource utilization of oil shale and rice.Thermogravimetric method was used to analyze the functional groups change and thermal transformation characteristics of mixed hydrochars prepared for oil shale(OS) and rice husk(RH) at different hydrothermal temperatures(150,200 and 250℃), including combustion and pyrolysis processes, and analyze the synergistic effects. Results showed that the co-hydrocharsization pretreatment had a significant effect on the thermal transformation behavior of oil shale and rice husk.On the one hand, the mixture of hydrocar has higher volatile content than its calculated value.On the other hand,a synergistic effect(promoting combustion and pyrolysis behavior) was found in both combustion and pyrolysis processes, and this effect was the most obvious when the hydrothermal temperature was around 200℃,and the characteristic peak of functional groups vibration was strong.Since the synergistic effect of pyrolysis process is lower than that of combustion process, co-hydrocharsation products are considered to be more suitable for combustion.These findings have positive significance of energy generation and utilization of organic waste by the combination of co-hydrocharsization modification and subsequent thermochemical process.


Author(s):  
Álvaro Muelas ◽  
Pilar Remacha ◽  
Javier Ballester

Recent studies on experimental gas turbines suggest that the addition of ethanol or butanol to Jet A are viable alternatives for reducing CO and NOx emissions while maintaining similar performance to that of pure Jet A. In light of this potential, experimental data regarding the burning characteristics of Jet A/ethanol and Jet A/butanol blends are required in order to better understand their combustion process. Following a previous study on Jet A/butanol droplet combustion, the scope has been extended in order to also include ethanol and a Jet A/ethanol mixture as well as to perform a more detailed characterization. In this work the combustion characteristics of Jet A, butanol, ethanol and their mixtures (20% vol. alcohol in kerosene) are presented for different test conditions. The evaluated combustion characteristics include droplet, flame and soot shell size evolutions, burning rates and image-based soot estimations. The influence of oxygen availability is also ascertained. The evolution of droplet diameter and burning rates for Jet A and its blends with both alcohols are very similar, whereas pure ethanol and butanol display more distinct behaviors. Soot indices are found to be quite different, with a clear reduction in the sooting propensity of the Jet A/alcohol mixtures when compared to neat kerosene. These results support the feasibility of kerosene-alcohol mixtures as promising alternative fuels with similar combustion characteristics, but with much lower sooting propensity than pure kerosene.


Sign in / Sign up

Export Citation Format

Share Document