scholarly journals Evaluación energética de biocombustibles sólidos elaborados a partir de mezclas de biomasa lignocelulósica

Author(s):  
Irene Carolina Beltrón Vinces ◽  
Holger Eugenio Palacios Bravo ◽  
Ernesto Rosero Delgado

  the purpose of this work is to determine the energy capacity of solid biofuels (pellets) made from the mixture of lignocellulosic biomass. The residues used were peanut husk (Arachishypogaea) and corn stalk (Zea mays L.) present in different proportions in a total of five mixtures. The highest calorific value obtained (30534,89kJ / kg) was that of mixture 4 in proportions of peanut shell and corn stalk 25:75 respectively with an ash production of 9,49% and a fixed carbon content of 26,18% results that favor the efficiency of the pellet in the combustion process (Tmax = 787 ± 13°C) while the mixture 1 (100% peanut shell) obtained the lowest energy content (M1: 28191,06 kJ / kg) With the results obtained, it was determined that pellets made from mixed biomass have better properties than those manufactured by a single type of lignocellulosic residue.   Index Terms— ash, biomass, caloric power, fixed carbon, pellets.

Author(s):  
Wilmer Hernán Ponce ◽  
Ernesto Rosero ◽  
Gisela Latorre ◽  
Irvin Zambrano ◽  
Carolina Zambrano ◽  
...  

Use of pine nut husk (Jatropha curcas L.) and rice straw (Oriza sativa L.) for the production of pellets as biofuel Resumen El uso de los biocombustibles sólidos es una de las alternativas para reemplazar a los combustibles convencionales en la producción de energía eléctrica y calorífica. Este trabajo tiene como objeto el aprovechamiento biomásico residual de la cáscara de piñón (Jatropha curcas L.) y paja de arroz (Oriza sativa L) para la producción de pellets como biocombustible sólido. Se aplicó mediante un diseño experimental (Simplex-lattice) la mezcla en proporciones de 100%-0%, 75%-25%, 50%-50%, 25%- 75%,0%-100% respectivamente. Se efectuaron análisis a la materia prima y producto terminado en porcentaje del contenido de humedad, cenizas, volátil, carbono fijo, adicionalmente el contenido de celulosa y lignina a las materias primas. Para la obtención de pellets, se empleó un equipo de pelletizado marca KL 1500, los pellets se elaboraron con recirculación para eliminar el exceso de humedad para el mejoramiento de textura y dureza. Las mezclas de las biomasas lignocelulósicas, que presentaron un mayor contenido de carbono fijo fueron la M2 (75%-25%) =16,53 ±3,2 % y M5 (0%-100%) =23,51 ±0,72%, en lo referente a material volátil fueron la M1 (100%-0%) =82,37±2,0% y M2 (75%-25%) =81,57±3,47%. El poder calorífico calculado reveló que con una mezcla del 75% de paja de arroz con un 25% de cáscara de piñón se obtiene un poder calorífico de 29,21±0,1 Mj/Kg y la mezcla de 50% de paja de arroz y 50% de cáscara de piñón, genera un valor de 29,01±0,01 Mj/Kg. Concluyendo que las mezclas mencionada puede ser aprovechada para la generación de calor. Palabras clave: Biocombustible sólido; biomasa; pellets; arroz; piñón. Abstract The use of solid biofuels is one of the alternatives to replace conventional fuels in the production of electrical and heat energy. The objective of this work is the residual biomass utilization of the pine nut husk (Jatropha curcas L.) and rice straw (Oriza sativa L) for the production of pellets as solid biofuels. The mixture was applied using an experimental design (Simplex-lattice) in proportions of 100% -0%, 75% -25%, 50% -50%, 25% - 75%, 0% -100% respectively. Analysis of the raw material and finished product were carried out as a percentage of the moisture, ash, volatile, and fixed carbon content, in addition to the cellulose and lignin content of the raw materials. To obtain pellets, a KL 1500 brand pelletizing equipment was used, the pellets were recirculated to remove excess moisture to improve texture and hardness. The mixtures of lignocellulosic biomasses, which had a higher fixed carbon content were M2 (75% -25%) = 16.53 ± 3.2% and M5 (0% -100%) = 23.51 ± 0, 72%, regarding volatile material, were M1 (100% -0%) = 82.37 ± 2.0% and M2 (75% -25%) = 81.57 ± 3.47%. The calculated calorific value revealed that with a mixture of 75% of rice straw with 25% of pinion husk, a calorific value of 29.21 ± 0.1 Mj / Kg is obtained and the mixture of 50% of rice straw and 50% of pinion shell, generates a value of 29.01 ± 0.01 Mj / Kg. Concluding that the mentioned mixtures can be used for heat generation. Keywords:  Solid biofuel; biomass; pellets; rice; pinion.


2012 ◽  
Vol 614-615 ◽  
pp. 107-110
Author(s):  
Hong Peng Liu ◽  
Xu Dong Wang ◽  
Chun Xia Jia ◽  
Wei Zhen Zhao ◽  
Qing Wang

The combustion experiments of oil shale semi-coke and corn stalk mixtures were conducted using thermogravimetric analyzer. The results show that the advance ignition and burnout can be achieved when semi-coke is mixed with corn stalk. The influence of different blend ratios has been studied, and the combustion characteristics were obtained. Comprehensive combustion characteristics get improved with the increase of corn stalk proportion in the mixture. The interaction of mixture in the combustion process occurs mainly in 400-600oC. It can be explained that the combustion of fixed carbon in corn stalk is delayed. What is more, TG curves were simulated by Johnson-Mehl-Avrami equation. The result shows the feasibility of using Weibull distribution to simulate the TG curves of co-combustion.


REAKTOR ◽  
2019 ◽  
Vol 18 (04) ◽  
pp. 183 ◽  
Author(s):  
Santiyo Wibowo ◽  
Ningseh Lestari

Peanut shells could be regarded as biomass wastes generated from agricultural products, which are abundantly available.  The current handling of those wastes is merely through direct incineration, without a proper and controlled manner. Consequently, it could arouse environmental concerns, such as air pollution and human respiratory diseases.  One alternative solution is converting those peanut shells to bio-pellet, expectedly applicable for fuels.  Relevantly, research on bio-pellet manufacture from peanut shells, previously treated with the torrefaction, was conducted. It’s aimed mainly to identify the fuel-related characteristics of bio-pellet products.  The tested bio-pellet parameters covered, moisture content, ash content, volatile matters, fixed carbon content, calorific values, and density.  The results revealed that torrefaction temperature and time at raw materials (peanut shells) could improve their qualities in regard to particular calorific value compared to those before such torrefaction; which referred to Indonesia’s Standard (SNI-8021-2014) for wood bio-pellet.  Further, torrefaction could increase bio-pellet quality which satisfied the SNI’s Standard, except for ash content.  Optimal torrefaction treatment was obtained at 300oC temperature for 60 minutes, whereby it achieved remarkable bio-pellet characteristics in terms of moisture content (3.092%), ash content (6.116%), volatile matters (38.387%), fixed carbon (55.447%), calorific value (6174 cal/g), and density (0.703 g/cm3). The torrefaction bio-pellets from peanut shells could achieve remarkable performances, with respect to fuel consumption rate (0.68 kg/hr), heating value (6174 kcal/kg), and thermal efficiency (16.67%).


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Haiqing Yang ◽  
Kuichuan Sheng

Rapid characterization of biochar for energy and ecological purpose utilization is fundamental. In this work, visible and near-infrared (vis-NIR) spectroscopy was used to measure ash, volatile matter, fixed carbon contents, and calorific value of three types of biochar produced from pine wood, cedar wood, and cotton stalk, respectively. The vis-NIR spectroscopy was also used to discriminate biochar feedstock types and pyrolysis temperature. Prediction result shows that partial least squares (PLS) regression calibrating the spectra to the values of biochar properties achieved very good or excellent performance with coefficient of determination (R2) of 0.86~0.91 and residual prediction deviation (RPD) of 2.58~3.32 for ash, volatile matter, and fixed carbon, and good prediction with R2 of 0.81 and RPD of 2.30 for calorific value. Linear discrimination analysis (LDA) of the principal components (PCs) produced from PCA of wavelength matrix shows that three types of biochar can be successfully discriminated with 95.2% accuracy. The classification of biochar with different pyrolysis temperatures can be conducted with 69% accuracy for all three types and 100% accuracy for single type of cotton stalk. This experiment suggests that the vis-NIR spectroscopy is promising as an alternative of traditionally quantitative and qualitative analysis of biochar properties.


2018 ◽  
Vol 2 (1) ◽  
pp. 91-100
Author(s):  
Sofia Mustamu ◽  
Gysberth Pattiruhu

Biopelet is one of the renewable energy alternatives that have uniformity of size, shape, density, and energy content. The purpose of this study was to examine the characteristics of biopelet consisting of a mixture of cajeput and gondorukem, and to determine the composition of the raw materials that can produce a biopelet with the best quality. The compositions of a mixture in this research are as follow 95%:5%, 90%:10%, 80%:20%, 70%:30%, 60%:40%, 50%:50%, cajeput 100% and gondorukem 100%. The manufacture of biopelet used a 20 mesh of dust with the pressure of 526.4 kg/cm2  at a temperature of 200 ◦C for 15 minutes. Types of tests performed on biopelet include density, moisture content, volatile matter, ash content, carbon bonded, and calorific value. The results of the best quality of biopelet was in the percentage of cajeput and gondorukem was 70%:30%,  tests showed densities of biopelet 0,84 g/cm3, moisture content5,89%, ash content 2,42%, volatile matter 73,99%, fixed carbon 18,96%, and calorific value 5152 kkal/kg.


Author(s):  
Karla Yuliana Palacios Vallejos ◽  
María Alexandra Romero Mendoza ◽  
Ernesto Alonso Rosero Delgado

  In Ecuador maize (Zea mays L) it´s produced in the coastal, Andean and Amazon region, 45.521 hectares are harvested annually in Manabí. On the other hand, peanuts (Arachishypogaea) are another important crop in Manabí agriculture. Within the different agricultural or processing processes, heterogeneous waste, especially biomass, which represents an environmental problem due to the lack of techniques for its use, remaining in the field in the form of waste, which creates pollution problems. An assessment was made of the physicochemical properties that influence energy potential (humidity, ash, fixed carbon and volatile material) of these residues specifically of corn stalk (TM) and peanut shell (CM) for use in the development of a solid biofuel (péllet). CM's moisture content was 11.45% and TM 10.83%. The highest ash content in CM 18.93% and a lower content at TM=11.93%. The fixed carbon content in CM=15.78% and in TM=23.11%, similar values were obtained in the volatile material content between the two residues (CM=65.47% and TM=64.96%), these results indicate that the selected waste can be used for power generation as solid biofuels. In a pilot burner, pellets were burned for each selected agro-industrial waste reaching a maximum temperature of 751±39 °C for CM and 653±13 °C for TM in time of 9 and 4 minutes respectively.   Index Terms— biomass, energy potential, solid biofuel.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1192
Author(s):  
Aneta Szymajda ◽  
Grażyna Łaska ◽  
Magdalena Joka

Recently, biomass application as a renewable energy source is increasing worldwide. However, its availability differs in dependence on the location and climate, therefore, agricultural residues as cow dung (CD) are being considered to supply heat and/or power installation. This paper aims at a wide evaluation of CD fuel properties and its prospect to apply in the form of pellets to direct combustion installations. Therefore, the proximate, ultimate composition and calorific value were analyzed, then pelletization and combustion tests were performed, and the ash characteristics were tested. It was found that CD is a promising source of bioenergy in terms of LHV (16.34 MJ·kg−1), carbon (44.24%), and fixed carbon (18.33%) content. During pelletization, CD showed high compaction properties and at a moisture content of 18%,and the received pellets’ bulk density reached ca. 470 kg·m−3 with kinetic durability of 98.7%. While combustion, in a fixed grate 25 kW boiler, high emissions of CO, SO2, NO, and HCl were observed. The future energy sector might be based on biomass and this work shows a novel approach of CD pellets as a potential source of renewable energy available wherever cattle production is located.


2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2016 ◽  
Vol 20 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Magdalena Kachel-Jakubowska ◽  
Artur Kraszkiewicz ◽  
Marta Krajewska

AbstractCurrently, many countries are establishing goals for substituting fossil fuels with biomass. This global trade in solid biofuels, which is to some extent already taking place, will have a major impact not only on other commodity markets like vegetable oils or animal fodder but also on the global land use change and on environmental impacts. It demonstrates the strong but complex link between biofuels production and the global food market, it unveils policy measures as the main drivers for production and use of biofuels and it analyzes various sustainability indicators and certification schemes for biofuels with respect to minimizing the adverse effects of biofuels. Biomass is seen as a very promising option for fulfilling the environmental goals defined by the European Commission as well as various national governments. We have measured selected physicochemical properties of several the most common oilseeds and the residue materials in the form of cakes, moisture, fat, heat of combustion, the calorific value and ash content. The results showed that the considered plants and waste derived therefrom can be a good energy source. Examples include sunflower oilcake, sesame, pumpkin and rapeseed cake, for which the calorific value amounted to respectively: 28.17; 27.77; 26.42 and 21.69 MJ·kg−1.


Sign in / Sign up

Export Citation Format

Share Document