Characteristics of Lower Paleozoic Black Shale Reservoir in Weixin District of Northern Yunnan Province

2012 ◽  
Vol 616-618 ◽  
pp. 217-222 ◽  
Author(s):  
Wei Guo ◽  
Hong Lin Liu ◽  
Xiao Bo Li ◽  
Hua Qing Xue

The North area of Yunnan Province is one of favorable target areas for prospecting shale gas of marine hydrocarbon reservoirs in South China, with the black rock series developed well at Lower Cambrian Niutitang Formation and Lower Silurain Longmaxi Formation. The black rock series can be classified into seven types of lithofacies,including black shale,siliceous shale, calcarleous shale,silty shale,carbonaceous shale,argillaceous siltstoue and carbonatite. The total content of organic carbon is 0.02% to 9.37%.The organic matter is overmature,with 2.05%~3.62% of Ro and dominated by type II-kerogen. The microporosity is dominated by the micropores,with pore size less than 10nm, secondly is foraminules with pore size ranging from 10nm to 100nm. The shale gas content is low overall,only 0.42 stere per ton average,and variety range is relatively large. Our research shows the content of plagioclase, carbonate and clay inflect the content of shale gas in the area of relieved synclines and less fault.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7603
Author(s):  
Xiaoyan Zou ◽  
Xianqing Li ◽  
Jizhen Zhang ◽  
Huantong Li ◽  
Man Guo ◽  
...  

This study is predominantly about the differences in shale pore structure and the controlling factors of shale gas content between Lower Silurian and Lower Cambrian from the upper Yangtze plate, which are of great significance to the occurrence mechanism of shale gas. The field emission scanning electron microscopy combined with Particles (Pores) and Cracks Analysis System software, CO2/N2 adsorption and the high-pressure mercury injection porosimetry, and methane adsorption were used to investigate characteristics of overall shale pore structure and organic matter pore, heterogeneity and gas content of the Lower Paleozoic in southern Sichuan Basin and northern Guizhou province from the upper Yangtze plate. Results show that porosity and the development of organic matter pores of the Lower Silurian are better than that of the Lower Cambrian, and there are four main types of pore, including interparticle pore, intraparticle pore, organic matter pore and micro-fracture. The micropores of the Lower Cambrian shale provide major pore volume and specific surface areas. In the Lower Silurian shale, there are mesopores besides micropores. Fractal dimensions representing pore structure complexity and heterogeneity gradually increase with the increase in pore volume and specific surface areas. There is a significant positive linear relationship between total organic carbon content and micropores volume and specific surface areas of the Lower Paleozoic shale, and the correlation of the Lower Silurian is more obvious than that of the Lower Cambrian. The plane porosity of organic matter increases with the increase in total organic carbon when it is less than 5%. The plane porosity of organic matter pores is positively correlated with clay minerals content and negatively correlated with brittle minerals content. The adsorption gas content of Lower Silurian and Lower Cambrian shale are 1.51–3.86 m3/t (average, 2.31 m3/t) and 0.35–2.38 m3/t (average, 1.36 m3/t). Total organic carbon, clay minerals and porosity are the main controlling factors for the differences in shale gas content between Lower Cambrian and Lower Silurian from the upper Yangtze plate. Probability entropy and organic matter plane porosity of the Lower Silurian are higher than those of Lower Cambrian shale, but form factor and roundness is smaller.


2017 ◽  
Vol 113 (9/10) ◽  
Author(s):  
Michiel de Kock ◽  
Nicolas Beukes ◽  
Elijah Adeniyi ◽  
Doug Cole ◽  
Annette Götz ◽  
...  

The Main Karoo basin has been identified as a potential source of shale gas (i.e. natural gas that can be extracted via the process of hydraulic stimulation or ‘fracking’). Current resource estimates of 0.4–11x109 m3 (13–390 Tcf) are speculatively based on carbonaceous shale thickness, area, depth, thermal maturity and, most of all, the total organic carbon content of specifically the Ecca Group’s Whitehill Formation with a thickness of more than 30 m. These estimates were made without any measurements on the actual available gas content of the shale. Such measurements were recently conducted on samples from two boreholes and are reported here. These measurements indicate that there is little to no desorbed and residual gas, despite high total organic carbon values. In addition, vitrinite reflectance and illite crystallinity of unweathered shale material reveal the Ecca Group to be metamorphosed and overmature. Organic carbon in the shale is largely unbound to hydrogen, and little hydrocarbon generation potential remains. These findings led to the conclusion that the lowest of the existing resource estimates, namely 0.4x109 m3 (13 Tcf), may be the most realistic. However, such low estimates still represent a large resource with developmental potential for the South African petroleum industry. To be economically viable, the resource would be required to be confined to a small, well-delineated ‘sweet spot’ area in the vast southern area of the basin. It is acknowledged that the drill cores we investigated fall outside of currently identified sweet spots and these areas should be targets for further scientific drilling projects.


2018 ◽  
Vol 37 (1) ◽  
pp. 194-218 ◽  
Author(s):  
Hongjie Xu ◽  
Shuxun Sang ◽  
Jingfen Yang ◽  
Jun Jin ◽  
Huihu Liu ◽  
...  

Indentifying reservoir characteristics of coals and their associated shales is very important in understanding the co-exploration and co-production potential of unconventional gases in Guizhou, China. Accordingly, comprehensive experimental results of 12 core samples from well LC-1# in the northern Guizhou were used and analyzed in this paper to better understand their vertical reservoir study. Coal and coal measured shale, in Longtan Formation, are rich in organic matter, with postmature stage of approximately 3.5% and shales of type III kerogen with dry gas generation. All-scale pore size analysis indicates that the pore size distribution of coal and shale pores is mainly less than 20 nm and 100 nm, respectively. Pore volume and area of coal samples influenced total gas content as well as desorbed gas and lost gas content. Obvious relationships were observed between residual gas and BET specific surface area and BJH total pore volume (determined by nitrogen adsorption). For shale, it is especially clear that the desorbed gas content is negatively correlated with BET specific surface area, BJH total pore volume and clay minerals. However, the relationships between desorbed gas and TOC (total organic carbon) as well as siderite are all well positive. The coals and shales were shown to have similar anoxic conditions with terrestrial organic input, which is beneficial to development of potential source rocks for gas. However, it may be better to use a low gas potential assessment for shales in coal-bearing formation because of their low S1+S2 values and high thermal evolution. Nevertheless, the coalbed methane content is at least 10 times greater than the shale gas content with low desorbed gases, indicating that the main development unconventional natural gas should be coalbed methane, or mainly coalbed methane with supplemented shale gas.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2679
Author(s):  
Yuying Zhang ◽  
Shu Jiang ◽  
Zhiliang He ◽  
Yuchao Li ◽  
Dianshi Xiao ◽  
...  

In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.


2021 ◽  
Vol 13 (1) ◽  
pp. 166-187
Author(s):  
Hao Liu ◽  
Chan Wang ◽  
Yong Li ◽  
Jianghong Deng ◽  
Bin Deng ◽  
...  

Abstract The black rock series in the Qiongzhusi Formation contains important geochemical information about the early Cambrian tectonic and ecological environment of the southwestern Yangtze Block. In this paper, major, trace, and rare earth element data are presented in an attempt to reveal the sediment source during the deposition of the early Cambrian Qiongzhusi Formation and to reconstruct the sedimentary tectonic environment and weathering intensity during that time. The basin primarily received continental clastic material with neutral-acidic igneous rocks from a stable source and with a moderate level of maturity during the depositional period of the Qiongzhusi Formation. Furthermore, the strata were weakly influenced by submarine hydrothermal fluids during diagenesis. The reconstruction of the sedimentary environment and weathering intensity shows that P2O5 enrichment and water body stratification occurred due to the effects of upwelling ocean currents during the depositional period of the Qiongzhusi Formation. The combination of upwelling and bottom-water hydrothermal fluids led to environmental changes in the study area, from dry and hot to moist and warm. Last, the reconstruction of the tectonic environment of the Qiongzhusi Formation indicates that deposition occurred in continental slope and marginal marine environments associated with a continental arc tectonic system. These findings provide an essential basis for the comprehensive reconstruction of the early Cambrian sedimentary environment of the Yangtze Block.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Weidong Xie ◽  
Meng Wang ◽  
Hongyue Duan

Adsorbed gas is one of the crucial occurrences in shale gas reservoirs; thus, it is of great significance to ascertain the adsorption capacity of shale and the adsorption characteristics of CH4. In this investigation, the Taiyuan–Shanxi Formations’ coal-measure shale gas reservoir of the Carboniferous–Permian era in the Hedong Coalfield was treated as the research target. Our results exhibit that the shale samples were characterized by a high total organic carbon (TOC) and over to high-over maturity, with an average TOC of 2.45% and average Ro of 2.59%. The mineral composition was dominated by clay (62% on average) and quartz (22.45% on average), and clay was mainly composed of kaolinite and illite. The Langmuir model showed a perfect fitting degree to the experimental data: VL was in the range of 0.01 cm3/g to 0.77 cm3/g and PL was in the range of 0.23–8.58 MPa. In addition, the fitting degree depicted a linear negative correlation versus TOC, while mineral composition did not exhibit a significant effect on the fitting degree, which was caused by the complex pore structure of organic matter, and the applicability of the monolayer adsorption theory was lower than that of CH4 adsorption on the mineral’s pore surface. An apparent linear positive correlation of VL versus the TOC value was recorded; furthermore, the normalized VL increased with the growth of the total content of clay mineral (TCCM), decreased with the growth of the total content of brittle mineral (TCBM), while there was no obvious correlation of normalized VL versus kaolinite, illite and quartz content. The huge amount of micropores and complex internal structure led to organic matter possessing a strong adsorption capacity for CH4, and clay minerals also promoted adsorption due to the development of interlayer pores and intergranular pores.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 635
Author(s):  
Shihu Zhao ◽  
Yanbin Wang ◽  
Yong Li ◽  
Honghui Li ◽  
Zhaohui Xu ◽  
...  

Tarim Basin is the largest Petroliferous basin in China, while its shale gas development potential has not been fully revealed. The organic-rich black shale in middle Ordovician Heituao Formation from Tadong low uplift of Tarim Basin has been considered as an important source rock and has the characteristic of large thickness, high organic matter content and high thermal maturity degree. To obtain its development potential, geochemical, mineralogical and mechanics research is conducted based on Rock-Eval pyrolysis, total organic carbon (TOC), X-ray diffraction (XRD) and uniaxial compression experiments. The results show that: (1) the TOC content ranges between 0.63 and 2.51 wt% with an average value of 1.22 wt%, the Tmax values are 382–523 °C (average = 468.9 °C), and the S2 value is relatively low which ranges from 0.08 to 1.37 mg HC/g rock (averaging of 0.42 mg HC/g rock); (2) the organic matter of Heituao shale in Tadong low uplift show poor abundance as indicated by low S2 value, gas-prone property, and post mature stage (stage of dry gas). (3) Quartz is the main mineral component in Heituao shale samples, accounting for 26–94 wt% with an average of 72 wt%. Additionally, its Young’s modulus ranges from 20.0 to 23.1 GPa with an average of 21.2 GPa, Poisson’s ratio ranges between 0.11 and 0.21 (average = 0.15); (4) the fracability parameter of brittleness index (BI) ranges between 0.28 and 0.99 (averaging of 0.85), indicating good fracability potential of Heituao shale of Tadong low uplift and has the potential for shale gas development. This study reveals the shale gas accumulation potential in middle Ordovician of the Tarim Basin, and beneficial for future exploration and production practice.


Sign in / Sign up

Export Citation Format

Share Document