scholarly journals Adsorption Characteristics and Controlling Factors of CH4 on Coal-Measure Shale, Hedong Coalfield

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Weidong Xie ◽  
Meng Wang ◽  
Hongyue Duan

Adsorbed gas is one of the crucial occurrences in shale gas reservoirs; thus, it is of great significance to ascertain the adsorption capacity of shale and the adsorption characteristics of CH4. In this investigation, the Taiyuan–Shanxi Formations’ coal-measure shale gas reservoir of the Carboniferous–Permian era in the Hedong Coalfield was treated as the research target. Our results exhibit that the shale samples were characterized by a high total organic carbon (TOC) and over to high-over maturity, with an average TOC of 2.45% and average Ro of 2.59%. The mineral composition was dominated by clay (62% on average) and quartz (22.45% on average), and clay was mainly composed of kaolinite and illite. The Langmuir model showed a perfect fitting degree to the experimental data: VL was in the range of 0.01 cm3/g to 0.77 cm3/g and PL was in the range of 0.23–8.58 MPa. In addition, the fitting degree depicted a linear negative correlation versus TOC, while mineral composition did not exhibit a significant effect on the fitting degree, which was caused by the complex pore structure of organic matter, and the applicability of the monolayer adsorption theory was lower than that of CH4 adsorption on the mineral’s pore surface. An apparent linear positive correlation of VL versus the TOC value was recorded; furthermore, the normalized VL increased with the growth of the total content of clay mineral (TCCM), decreased with the growth of the total content of brittle mineral (TCBM), while there was no obvious correlation of normalized VL versus kaolinite, illite and quartz content. The huge amount of micropores and complex internal structure led to organic matter possessing a strong adsorption capacity for CH4, and clay minerals also promoted adsorption due to the development of interlayer pores and intergranular pores.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6716
Author(s):  
Shengxiu Wang ◽  
Jia Wang ◽  
Yuelei Zhang ◽  
Dahua Li ◽  
Weiwei Jiao ◽  
...  

Shale gas accumulates in reservoirs that have favorable characteristics and associated organic geochemistry. The Wufeng-Longmaxi formation of Well Yucan-6 in Southeast Chongqing, SW China was used as a representative example to analyze the organic geochemical and reservoir characteristics of various shale intervals. Total organic carbon (TOC), vitrinite reflectance (Ro), rock pyrolysis, scanning electron microscopy (SEM), and nitrogen adsorption analyses were conducted, and a vertical coupling variation law was established. Results showed the following: the Wufeng-Longmaxi formation shale contains kerogen types I and II2; the average TOC value at the bottom of the formation is 3.04% (and the average value overall is 0.78%); the average Ro value is 1.94%; the organic matter is in a post mature thermal evolutionary stage; the shale minerals are mainly quartz and clay; and the pores are mainly intergranular, intragranular dissolved pores, organic matter pores and micro fractures. In addition, the average specific surface area (BET) of the shale is 5.171 m2/g; micropores account for 4.46% of the total volume; the specific surface area reaches 14.6%; and mesopores and macropores are the main pore spaces. There is a positive correlation between TOC and the quartz content of Wufeng-Longmaxi shale, and porosity is positively correlated with the clay mineral content. It is known that organic pores and the specific area develop more favorably when the clay mineral content is higher because the adsorption capacity is enhanced. In addition, as shale with a high clay mineral content and high TOC content promotes the formation of a large number of nanopores, it has a strong adsorption capacity. Therefore, the most favorable interval for shale gas exploration and development in this well is the shale that has a high TOC content, high clay mineral content, and a suitable quartz content. The findings of this study can help to better identify shale reservoirs and predict the sweet point in shale gas exploration and development.


Author(s):  
Shangbin Chen ◽  
Chu Zhang ◽  
Xueyuan Li ◽  
Yingkun Zhang ◽  
Xiaoqi Wang

AbstractIn shale reservoirs, the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane. However, in the process of thermal evolution, the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied. In this study, the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin, China. The results show that the characteristics of pore structure will affect the methane adsorption characteristics. The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores. The groove space inside the pore will change the density distribution of methane molecules in the pore, greatly improve the adsorption capacity of the pore, and increase the pressure sensitivity of the adsorption process. Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size, all pores have the strongest methane adsorption capacity when the pore size is about 2 nm. In addition, the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics. The pore adsorption capacity first increases and then decreases with the increase of pressure, and increases with the increase of temperature. In the early stage of thermal evolution, pore adsorption capacity is strong and pressure sensitivity is weak; while in the late stage, it is on the contrary.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5427
Author(s):  
Boning Zhang ◽  
Baochao Shan ◽  
Yulong Zhao ◽  
Liehui Zhang

An accurate understanding of formation and gas properties is crucial to the efficient development of shale gas resources. As one kind of unconventional energy, shale gas shows significant differences from conventional energy ones in terms of gas accumulation processes, pore structure characteristics, gas storage forms, physical parameters, and reservoir production modes. Traditional experimental techniques could not satisfy the need to capture the microscopic characteristics of pores and throats in shale plays. In this review, the uniqueness of shale gas reservoirs is elaborated from the perspective of: (1) geological and pore structural characteristics, (2) adsorption/desorption laws, and (3) differences in properties between the adsorbed gas and free gas. As to the first aspect, the mineral composition and organic geochemical characteristics of shale samples from the Longmaxi Formation, Sichuan Basin, China were measured and analyzed based on the experimental results. Principles of different methods to test pore size distribution in shale formations are introduced, after which the results of pore size distribution of samples from the Longmaxi shale are given. Based on the geological understanding of shale formations, three different types of shale gas and respective modeling methods are reviewed. Afterwards, the conventional adsorption models, Gibbs excess adsorption behaviors, and supercritical adsorption characteristics, as well as their applicability to engineering problems, are introduced. Finally, six methods of calculating virtual saturated vapor pressure, seven methods of giving adsorbed gas density, and 12 methods of calculating gas viscosity in different pressure and temperature conditions are collected and compared, with the recommended methods given after a comparison.


2021 ◽  
Author(s):  
Nasar Khan ◽  
Rudy Swennen ◽  
Gert Jan Weltje ◽  
Irfan Ullah Jan

<p><span><strong>Abstract:</strong> Reservoir assessment of unconventional reservoirs poses numerous exploration challenges. These challenges relate to their fine-grained and heterogeneous nature, which are ultimately controlled by depositional and diagenetic processes. To illustrate such constraints on shale gas reservoirs, this study focuses on lithofacies analysis, paleo-depositional and diagenetic evolution of the Paleocene Patala Formation at Potwar Basin of Pakistan. Integrated sedimentologic, petrographic, X-ray diffraction and TOC (total organic carbon) analyses showed that the formation contained mostly fine-grained carbonaceous, siliceous, calcareous and argilaceous siliciclastic-lithofacies, whereas carbonate microfacies included mudstone, wackestone and packstone. The silicious and carbonaceous lithofacies are considered a potential shale-gas system. The clastic lithofacies are dominated by detrital and calcareous assemblage including quartz, feldspar, calcite, organic matter and clay minerals with auxiliary pyrites and siderites. Fluctuations in depositional and diagenetic conditions caused  lateral and vertical variability in lithofacies. Superimposed on the depositional heterogeneity are spatially variable diagenetic modifications such as dissolution, compaction, cementation and stylolitization. The δ</span><sup>13</sup><span>C and δ</span><sup>15</sup><span>N stable isotopes elucidated that the formation has been deposited under anoxic conditions, which relatively enhanced the preservation of mixed marine and terrigenous organic matter. Overall, the Patala Formation exemplifies deposition in a shallow marine (shelfal) environment with episodic anoxic conditions.</span></p><p><strong>Keywords</strong><strong>:</strong> Lithofacies, Organic Matter, Paleocene, Potwar Basin, Shale Gas, Shallow Marine.</p>


2013 ◽  
Vol 868 ◽  
pp. 121-124 ◽  
Author(s):  
Jun Yuan ◽  
Yan Bin Wang ◽  
Xin Zhang ◽  
Jing Jing Fan ◽  
Pei Xue

The Shanxi and Taiyuan formations in Permo-Carboniferous of upper Paleozoic Erathem of Qinshui Basin, not only has abundant coal and CBM resources, also has a lot of shales. By analyzing the shale thickness, organic matter type, organic matter abundance, vitrinite reflectance, mineral composition of the Permo-Carboniferous coal-bearing strata, considered that the shale thickness of coal-bearing strata in the Qinshui Basin is larger, the organic matter abundance is general, but maturity is high and full of rich brittle mineral. It is in favor of late fracturing.


2018 ◽  
Vol 37 (6) ◽  
pp. 791-804 ◽  
Author(s):  
Yuantao Gu ◽  
Quan Wan ◽  
Wenbin Yu ◽  
Xiaoxia Li ◽  
Zhongbin Yu

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Galina P. Kayukova ◽  
Anastasiya N. Mikhailova ◽  
Igor P. Kosachev ◽  
Dmitry A. Emelyanov ◽  
Mikhail A. Varfolomeev ◽  
...  

The features of the oil-bearing capacity of the productive strata of Permian deposits in the interval of 117.5-188.6 m along the section of individual wells of the Ashal’cha field of heavy superviscous oil (Tatarstan) were revealed depending on the content, composition, and thermal effects of organic matter (OM) oxidation in the rocks. It is shown that the rocks are very heterogeneous in their mineral composition and in the content of both free hydrocarbons by extraction with organic solvents and insoluble OM closely associated with the rock. The total content of OM in rocks varies from 1.72 to 9.12%. The features of group and hydrocarbon composition of extracts from rocks are revealed depending on their mineral composition and the content of organic matter in them. According to the molecular mass distribution of alkanes of normal and isoprenoid structure, extracts from rocks are differentiated according to three chemical types of oil: type A1, in which n-alkanes of composition C14 and above are present, and types A2 and B2, in which n-alkanes are destroyed to varying degrees by processes microbial destruction, which indicates a different intensity of biochemical processes in productive strata of Permian sediments. These processes lead to a decrease in the amount of OM in the rocks and an increase in the content of resins and asphaltenes in the oil extracted from them, as well as an increase in the viscosity of the oil. Using the method of differential scanning calorimetry of high pressure, it was found that the studied rock samples differ from each other in quantitative characteristics of exothermic effects in both low-temperature (LTO) 200-350°С and high-temperature (HTO) 350-600°С zones of OM oxidation. The total thermal effect of destruction processes of OM depends on the content of OM in the rocks and its composition. The research results show that when heavy oil is extracted using thermal technologies, the Permian productive strata with both low and high OM contents will be involved in the development, and the general thermal effect of the oxidation of which will contribute to increased oil recovery.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 664 ◽  
Author(s):  
Lei Li ◽  
Guanglong Sheng ◽  
Yuliang Su

Hydraulic fracturing is a necessary method to develop shale gas reservoirs effectively and economically. However, the flow behavior in multi-porosity fractured reservoirs is difficult to characterize by conventional methods. In this paper, combined with apparent porosity/permeability model of organic matter, inorganic matter and induced fractures, considering the water film in unstimulated reservoir volume (USRV) region water and bulk water in effectively stimulated reservoir volume (ESRV) region, a multi-media water-gas two-phase flow model was established. The finite difference is used to solve the model and the water-gas two-phase flow behavior of multi-fractured horizontal wells is obtained. Mass transfer between different-scale media, the effects of pore pressure on reservoirs and fluid properties at different production stages were considered in this model. The influence of the dynamic reservoir physical parameters on flow behavior and gas production in multi-fractured horizontal wells is studied. The results show that the properties of the total organic content (TOC) and the inherent porosity of the organic matter affect gas production after 40 days. With the gradual increase of production time, the gas production rate decreases rapidly compared with the water production rate, and the gas saturation in the inorganic matter of the ESRV region gradually decreases. The ignorance of stress sensitivity would cause the gas production increase, and the ignorance of organic matter shrinkage decrease the gas production gradually. The water film mainly affects gas production after 100 days, while the bulk water has a greater impact on gas production throughout the whole period. The research provides a new method to accurately describe the two-phase fluid flow behavior in different scale media of fractured shale gas reservoirs.


2015 ◽  
Vol 153 (4) ◽  
pp. 663-680 ◽  
Author(s):  
WENLONG DING ◽  
PENG DAI ◽  
DINGWEI ZHU ◽  
YEQIAN ZHANG ◽  
JIANHUA HE ◽  
...  

AbstractFractures are important for shale-gas reservoirs with low matrix porosity because they increase the effective reservoir space and migration pathways for shale gas, thus favouring an increased volume of free gas and the adsorption of gases in shale reservoirs, and they increase the specific surface area of gas-bearing shales which improves the adsorption capacity. We discuss the characteristics and dominant factors of fracture development in a continental organic matter-rich shale reservoir bed in the Yanchang Formation based on observations and descriptions of fracture systems in outcrops, drilling cores, cast-thin sections and polished sections of black shale from the Upper Triassic Yanchang Formation in the SE Ordos Basin; detailed characteristics and parameters of fractures; analyses and tests of corresponding fracture segment samples; and the identification of fracture segments with normal logging. The results indicate that the mineral composition of the continental organic-matter-rich shale in the Yanchang Formation is clearly characterized by a low brittle mineral content and high clay mineral content relative to marine shale in the United States and China and Mesozoic continental shale in other basins. The total content of brittle minerals, such as quartz and feldspar, is c. 41%, with quartz and feldspar accounting for 22% and 19% respectively, and mainly occurring as plagioclase with small amounts of carbonate rocks. The total content of clay minerals is high at up to 52%, and mainly occurs as a mixed layer of illite-smectite (I/S) which accounts for more than 58% of the total clay mineral content. The Upper Triassic Yanchang Formation developed two groups of fracture (joint) systems: a NW–SE-trending system and near-E–W-trending system. Multiple types of fractures are observed, and they are mainly horizontal bedding seams and low-dip-angle structural fractures. Micro-fractures are primarily observed in or along organic matter bands. Shale fractures were mainly formed during Late Jurassic – late Early Cretaceous time under superimposed stress caused by regional WNW–ESE-trending horizontal compressive stress and deep burial effects. The extent of fracture development was mainly influenced by multiple factors (tectonic factors and non-tectonic factors) such as the lithology, rock mechanical properties, organic matter abundance and brittle mineral composition and content. Specifically, higher sand content has been observed to correspond to more rapid lithological changes and more extensive fracture development. In addition, higher organic matter content has been observed to correspond to greater fracture development, and higher quartz, feldspar and mixed-layer I/S contents have been observed to correspond to more extensive micro-fracture development. These results are consistent with the measured mechanical properties of the shale and silty shale, the observations of fractures in cores and thin-sections from more than 20 shale-gas drilling wells, and the registered anomalies from gas logging.


Sign in / Sign up

Export Citation Format

Share Document