Corrosion Behavior of AZ91 Mg-Alloy Coated with AlN and TiN in NaCl and Hank's Solution

2012 ◽  
Vol 626 ◽  
pp. 275-279 ◽  
Author(s):  
Zulkifli Mohd Rosli ◽  
Zainab B. Mahamud ◽  
Jariah Mohd Juoi ◽  
Nayan Nafarizal ◽  
Kwan Wai Loon ◽  
...  

Magnesium alloys create increasing interest in structural application where weight reduction is vast concern. However, its low corrosion resistance especially in atmosphere environment restricts their wide application. In this study, AlN and TiN were coated on AZ91 Mg alloy using PVD magnetron sputtering. AlN and TiN existence is confirmed via grazing angle x-ray diffraction (GA-XRD). The corrosion behaviors of uncoated and coated AZ91 Mg alloy in3.5% NaCl and Hanks solutions were investigated using a potentiostat during electrochemical corrosion test. AlN and TiN coated samples showed better performance in Hanks solution with TiN coated samples have the least corrosion rate (penetration rate=0.040mm/yr and mass loss rate=0.191g/m2d) in Hanks solution. These create interest to further works on exploring the potential of coated AZ91 Mg alloy in biomaterial application.

2009 ◽  
Vol 610-613 ◽  
pp. 1150-1154
Author(s):  
Ai Lan Fan ◽  
Cheng Gang Zhi ◽  
Lin Hai Tian ◽  
Lin Qin ◽  
Bin Tang

The Mo surface modified layer on Ti6Al4V alloy was obtained by the plasma surface alloying technique. The structure and composition of the Mo modified Ti6Al4V alloy was investigated by X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The Mo modified layer contains Mo coating on subsurface and diffusion layers between the subsurface and substrate. The X- ray diffraction analysis of the Mo modified Ti6Al4V alloy reveals that the outmost surface of the Mo modified Ti6Al4V alloy is composed of pure Mo. The electrochemical corrosion performance of the Mo modified Ti6Al4V alloy in 25°C Hank’s solution was investigated and compared with that of Ti6Al4V alloy. Results indicate that the self-corroding electric potential and the corrosion-rate of the Mo modified Ti6Al4V alloy are higher than that of Ti6Al4V alloy in 25°C Hank’s solution.


2007 ◽  
Vol 546-549 ◽  
pp. 1753-1758
Author(s):  
Wen Ping Liang ◽  
Zhong Xu ◽  
Qiang Miao ◽  
Xiao Ping Liu ◽  
Zhi Yong He

Ti2AlNb orthorhombic alloy is a promising high temperature structural material for aero-industries due to its advantageous properties. However, insufficient wear-resistance is a major drawback that has restricted the actual uses of this alloy in many circumstances. A treatment of double glow plasma surface chromizing on Ti2AlNb alloy has been carried out as an attempt to resolve this problem. This paper mainly investigated the electrochemical corrosion behaviors of this alloy after chromizing. The microstructure of the chromized layer was analyzed by X-ray diffraction (XRD). The sectional morphology of chromized layer was surveyed through scanning electronic microscopy (SEM).The polarization curves of specimens in three corrosive media, 5% H2SO4, 5% HCl and 3.5% NaCl, were measured. The eroded surface morphologies were also surveyed by SEM. The results indicate that surface chromizing treatment slightly decrease the alloy’s corrosion resistance, but still exhibit good performance.


2021 ◽  
Vol 118 (5) ◽  
pp. 504
Author(s):  
Ali Ercetin

The corrosion behaviors of the hot-pressed Mg-Sn-Zn-Al-Mn magnesium alloys with the addition of Al in different proportions have been investigated. Paraffin coating technique was applied to Mg powders before production. After debinding at 300 °C, the sintering process was applied at 610 °C under 50 MPa pressure for 70 min. All of the alloys were immersed in Hank’s solution for 10-days. The results indicated that the corrosion properties of the alloys were affected by the production method (hot pressing) and alloying element addition. After immersion, magnesium hydroxide (Mg(OH)2), hydroxyapatite (HA), and Mg-Al hydrotalcite structures were determined by the X-ray diffraction (XRD) analysis on the surfaces of Mg-Sn-Zn-Al-Mn alloys. The Mg-Al hydrotalcite protective layer was effective in preventing corrosion. Superior corrosion properties (weight loss: 1.2%, total volume of evolved H2 gas: 4 ml/cm2, corrosion rate: 0.39 mm/year) were obtained from TZAM5420 alloy (5 wt.%Sn, 4 wt.%Zn, 2 wt.%Al, 0.2 wt.%Mn).


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1407
Author(s):  
Tianyu Yao ◽  
Kui Wang ◽  
Haiyan Yang ◽  
Haiyan Jiang ◽  
Jie Wei ◽  
...  

A method of forming an Mg/Al intermetallic compound coating enriched with Mg17Al12 and Mg2Al3 was developed by heat treatment of electrodeposition Al coatings on Mg alloy at 350 °C. The composition of the Mg/Al intermetallic compounds could be tuned by changing the thickness of the Zn immersion layer. The morphology and composition of the Mg/Al intermetallic compound coatings were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD). Nanomechanical properties were investigated via nano-hardness (nHV) and the elastic modulus (EIT), and the corrosion behavior was studied through hydrogen evolution and potentiodynamic (PD) polarization. The compact and uniform Al coating was electrodeposited on the Zn-immersed AZ91D substrate. After heat treatment, Mg2Al3 and Mg17Al12 phases formed, and as the thickness of the Zn layer increased from 0.2 to 1.8 μm, the ratio of Mg2Al3 and Mg17Al12 varied from 1:1 to 4:1. The nano-hardness increased to 2.4 ± 0.5 GPa and further improved to 3.5 ± 0.1 GPa. The Mg/Al intermetallic compound coating exhibited excellent corrosion resistance and had a prominent effect on the protection of the Mg alloy matrix. The control over the ratio of intermetallic compounds by varying the thickness of the Zn immersion layer can be an effective approach to achieve the optimal comprehensive performance. As the Zn immersion time was 4 min, the obtained intermetallic compounds had relatively excellent comprehensive properties.


2013 ◽  
Vol 699 ◽  
pp. 645-649
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, with the addition of a given concentration sodium molybdate as the inhibitor, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by potentiodynamic polarization curve tests and electrochemical impedance spectra (EIS) at the ambient temperature for different test periods. The results indicated that : with the extension of period, the inhibition efficiencies (IE) for both the weld and 5083 base materials enhanced, at the same period, the inhibition efficiency (IE) for the weld was beyond that for 5083 base materials, sodium molybdate may be thought of as an effective inhibitor for 5083 aluminum alloy, the interaction between inhibitor and weld is stronger than that between inhibitor and base materials.


1989 ◽  
Vol 164 ◽  
Author(s):  
M.A. Hachicha ◽  
Etienne Bustarret

AbstractUndoped 500 nm-thick silicon layers with a crystalline fraction around 95% and an average grain size of 20 nm have been deposited at 350°C by 50 kHz triode PECVD in a H2/SiH4 mixture, in the presence of a magnetic field. Their room temperature (rt) dc conductivity μrt is 0.03 Δ−1cm−1 for a Hall mobility of 0.8 cm 2V−1s−1.The study by SIMS, infrared absorption, grazing angle x-ray diffraction and Raman scattering spectroscopies of the doped samples shows how the crystalline fraction and the grain size drop as the B2H6/SiH4 and PH3/SiH4 volumic ratios increase from 10 ppm to 1%.The rt dc conductivity reaches 2 Δ−1 cm−1 (Hall mobility: 15 cm2V−ls−1) for a solid phase density of 1019 cm−3 boron atoms, and 30 Δ−1cm−1 (Hall mobility: 55 cm2V−ls−1) at the maximum P incorporation of 8 × 1020cm−3.


2010 ◽  
Vol 146-147 ◽  
pp. 475-480 ◽  
Author(s):  
Ran Liu ◽  
Xing Juan Wang ◽  
Yong Liang Gao ◽  
Qing Lu ◽  
Xiang Xin Xue

Using ludwigite as raw material, the phase transformation and mass loss rate of ludwigite in the process of oxidizing roasting are investigated by DTA, isothermal TG, scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques. The results showed that magnetite is transformed into hematite, serpentine is decomposed into forsterite at lower temperature (T<700°C). The weight of ludwigite has a small loss below 600°C. The decomposed of szaibelyite dehydrated and formed into suanite about 700°Cis the main reason of causing ludwigite mass losses. By comparing the curves of ludwigite at different temperature from 700 to 900°C, the process of oxidizing roasting can be divided into three phases: characterized by a period of fast weight loss, and then followed by a mass gain. Finally, weight of sample is no longer change with prolongation of time. The final weight loss is 6.062%, 6.658% and 7.442% respectively for test temperature. Suanite can not be decomposed to form B2O3 and volatilized when the temperature of oxidizing roasting is below 1142 °C. It is found by XRD that paigeite and magnoferrite are the most stable composition without deterioration on oxidizing roasting. The experiment results can provide theoretical references for agglomeration and blast furnace smelting of ludwigite.


2002 ◽  
Vol 716 ◽  
Author(s):  
Hayk H. Bezirganyan ◽  
Siranush E. Bezirganyan ◽  
Hakob P. Bezirganyan ◽  
Petros H. Bezirganyan

AbstractPresented theoretical paper concerns the investigation of SiGeC/Si heterojunction by the Grazing-angle Incidence X-ray Diffraction (GIXD) method. We consider a possibility in principal of the GIXD by the specific long-range harmonic variations of the germanium and carbon compositions in the thin SiGeC layer. Evaluation of the theoretically calculated coherent part of x-radiation scattered by the SiGeC layer points the way to the experimental direct investigations of the long-period structured intermediate transformation states of SiGeC layer that emerge owing to inhomogeneity of the strain field along the heterojunction surface.


Sign in / Sign up

Export Citation Format

Share Document