Development of Natural Fiber Reinforced Laminated Hybrid Composites

2012 ◽  
Vol 628 ◽  
pp. 15-20 ◽  
Author(s):  
Mustafa Bakkal ◽  
Mehmet Savas

In this study, mechanical properties of composite laminates reinforced with various forms of glass fibers have been investigated. Tensile testing, impact testing and optical microscopy and SEM analysis results were discussed. The results of glass fiber reinforced novel composite material have been compared with the results of a commercial car front bumper material tests performed in same conditions. Study concluds that glass fiber has positive hybridization effect and increased tensile strengths, elastic modules and impact strengths in laminar hybrid composites.

2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


Author(s):  
Govind Pathak ◽  
Om Prakash Dubey ◽  
Prafful Kumar Manoharan

The natural fiber-reinforced polymer composite is swiftly growing both in phrases of their industrial applications and fundamental research. They are renewable, cheap, absolutely or in part recyclable and biodegradable. The incorporation of herbal fibers consisting of sisal with glass fiber hybrid composites has additionally received growing industrial packages. Herbal and synthetic fibers are mixed in the same matrix (unsaturated polyester) to make sisal/glass fiber hybrid composites and the mechanical residences of those hybrid composites had been studied. A giant development in mechanical homes of sisal/glass fiber hybrid composites has been observed. the chalk powder (additive) is likewise introduced to the resin (unsaturated polyester) in proportions of 1%, 2%, 3% by way of weight of resin respectively and sisal/glass fiber hybrid composites were organized through the usage of this resin to take a look at the effect of chalk powder on mechanical homes of those hybrid composites. It is also found that because the chalk powder quantity increases tensile and flexural residences are decreases.


2015 ◽  
Vol 766-767 ◽  
pp. 162-166 ◽  
Author(s):  
Ashwin Sailesh ◽  
K. Palanikumar ◽  
R. Arunkumar ◽  
P. Ramu ◽  
A. Maxwell Briston ◽  
...  

Over the past two to three decades the development in the field of composite material is immense and continues to be increasing. The utilization of natural fibers in the field of composites is increasing day by day. This is due the fact that natural fibers are eco-friendly, easily available, non-abrasive and economical. The combination of natural fiber with Glass fibers is finding increased applications. In the current investigation Banana – Bamboo – Glass fiber reinforced composites is fabricated by the method of Hand – Layup with variable fiber orientation and is tested for its flexural strength and the best flexural strength is identified by using Taguchi Methodology. Nomenclature Used: BN – Banana Fiber BM – Bamboo Fiber G – Glass fiber DOE – Design of Experiments S/N Ratio – Signal to Noise Ratio OA – Orthogonal Array.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Ragunath ◽  
A. N. Shankar ◽  
K. Meena ◽  
B. Guruprasad ◽  
S. Madhu ◽  
...  

The aim of this research work was to develop the optimal mechanical properties, namely, tensile strength, flexural strength, and impact strength of sisal and glass fiber-reinforced polymer hybrid composites. The sisal, in the form of short fiber, is randomly used as reinforcements for composite materials, which is rich in cellulose, economical, and easily available as well as glass fibers have low cost and have good mechanical properties. In addition, epoxy resin and hardener were for the fabrication of composites by compression molding. The selected materials are fabricated by compression molding in various concentrations on volume basics. The combination of material compositions is obtained from the design of experiments and optimum parameters determined by the Response Surface Methodology (RSM). From the investigation of mechanical properties, the sisal is the most significant factor and verified by ANOVA techniques. The multiobjective optimal levels of factors are obtained by LINGO analysis.


Author(s):  
Sandhyarani Biswas ◽  
Prity Aniva Xess

Now-a-days, there is an increasing interest in hybrid composites made by combination of two or more different types of fiber in a common matrix because these materials offer a range of properties that cannot be attained with a single type of reinforcement. The fibres are either natural or synthetic and both types of fiber have advantages and disadvantages. Therefore, in this work a new class of hybrid composite reinforced with a synthetic fiber and a natural fiber is developed to get the advantage of both the fibres in terms of superior tribological properties and economy. The present research work is undertaken to investigate the erosion behaviour of short bamboo and glass fiber reinforced epoxy based hybrid composites.


Author(s):  
Pradeep Devaenthiran ◽  
◽  
Kumar Murugesan ◽  
Sangaravadivel Palaniappan ◽  
◽  
...  

Automobile bumper is an essential component that is commonly used to absorb the impact load during vehicle collisions, in fact it saves lives at such occurrences.In order to withstand the impact load, and the bumper deforms itself during collision and protects the passengers by havingthe proper cross section and the material selection. In this way, the study explores the mechanical characterization of fabricated composite and its structural analysis. Impact conditions have to be studied for improving the mechanical properties of the bumper during collision. The material chosen for analysis is jute and Glass fiber reinforced hybrid epoxy composite, considering its light weight and strength characteristics. Composites with two different fibre orientations (45°/90°) are fabricated using Hydraulic Compression Moulding technique. From experimental observations of jute and glass fiber reinforced hybrid composites, the orientation has significant effect on the structural and mechanical properties. The results are validated using the simulation of a bumper by impact modelling using CATIA software and impact analysis is carried out using ANSYS.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2211
Author(s):  
S.M. Sapuan ◽  
H.S. Aulia ◽  
R.A. Ilyas ◽  
A. Atiqah ◽  
T.T. Dele-Afolabi ◽  
...  

This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.


2021 ◽  
Vol 57 (4) ◽  
pp. 309-316
Author(s):  
Orkun Kaymakci ◽  
Nurseli Uyanik

Hybrid composites of in-situ microfibrillar recycled polyethylene terephthalate (rPET)/glass fiber (GF)/polypropylene (PP) were developed as an economical and environmentally friendly alternative to glass fiber reinforced thermoplastic PP composites. The effect of replacing glass fibers with in-situ formed polymer microfibrils on mechanical and viscoelastic properties of the composites was investigated with tensile, flexural, and dynamic mechanical tests. Characterization results showed that mechanical and viscoelastic performance of 34% glass fiber reinforced PP can be obtained with 24% glass fiber, 10% microfibrillar rPET composites. Compatibilization effect of the maleic anhydride grafted PP (MA-g-PP) was studied using Fourier transform infrared (FTIR) spectroscopy. The scanning electron microscopy (SEM) images confirmed the formation of the rPET microfibrils in the hybrid matrix. Besides, composites with MA-g-PP compatibilizers showed significantly improved fiber-matrix interfacial adhesion on the SEM images.


2015 ◽  
Vol 766-767 ◽  
pp. 116-121
Author(s):  
Ashwin Sailesh ◽  
K. Palanikumar ◽  
R. Arunkumar ◽  
V. Nisanth ◽  
R. Vignesh ◽  
...  

The developments in the field of composite materials are phenomenal. The use of natural fibers in the field of composite material is gaining importance. This is due to the advantages of natural fibers: they are eco-friendly, easily available, non-abrasive and cost effective. The combination of natural fiber with Glass fibers is used widely in many applications. In the current investigation Banana – Bamboo – Glass fiber reinforced composites is fabricated by Hand – Layup technique with varying fiber orientation and is tested for its tensile strength and the combination that would yield the best tensile strength is identified by using Taguchi Method.


Sign in / Sign up

Export Citation Format

Share Document