Research on the Attenuation Law of Stress Wave Propagation in Concrete Media

2013 ◽  
Vol 671-674 ◽  
pp. 758-767
Author(s):  
Wei Sun ◽  
Shi Yan ◽  
Shao Fei Jiang

This paper presents an experimental method to investigate the attenuation performance of stress waves in concrete structures embedded in piezoelectric ceramics. To get the research objective, a series of test were hold. The relationship curve between the frequency and the attenuation coefficient was fit. The calculation method for propagation distances of stress waves with constant amplitudes and frequencies in the concrete medium was proposed. The research results show that the relationship curve of attenuation coefficient and frequency conform to the cubic polynomial function approximately. The attenuation performance for the concrete structure embedded into piezoelectric ceramics is relevant to the frequency, the amplitude and the medium character, and the frequency is the main factor. The research results of this paper can provide an effective evidence for correctly placing transducers.

Author(s):  
Joseph Hassan ◽  
Guy Nusholtz ◽  
Ke Ding

During a vehicle crash stress waves can be generated at the impact point and propagate through the vehicle structure. The generation of these waves is dependent, in general, on the crash type and, in particular, on the impact contact characteristics. This has consequences with respect to different crash barrier interfaces for vehicle evaluation. The two barriers most commonly used to evaluate the response of a vehicle in a frontal impact are the rigid barrier and the offset deformable barrier. They constitute different crash modes, full frontal and offset. Consequently it would be expected that there are different deformation patterns between the two. However, an additional possible contributor to the difference is that an impact into a rigid barrier generates waves of significantly greater stress than impacts with the deformable one. If stress waves are a significant component of real world final deformation patterns then, the choice of barrier interface and its effective stiffness is critical. To evaluate this conjecture, models of two types of rails each undergoing two different types of impacts, are analyzed using an explicit dynamic finite element code. Results show that the energy perturbation along the rail depends on the barrier type and that the early phase of wave propagation has very little effect on the final deformation pattern. This implies that in the real world conditions, the stress wave propagation along the rail has very little effect on the final deformed shape of the rail.


1986 ◽  
Vol 118 (12) ◽  
pp. 1287-1290 ◽  
Author(s):  
A.B. Stevenson

AbstractRates of development of selected stages and complete development of the carrot weevil, Listronotus oregonensis (LeConte), were determined in the laboratory at controlled temperatures ranging from 17.5 to 30°C. Within that range of temperature, rates of development increased with temperature. Fitting the data to a cubic polynomial function provided an excellent description of the relationship between temperature and rate of development for all stages as shown by R2 values of at least 0.98.


2009 ◽  
Vol 407-408 ◽  
pp. 632-635
Author(s):  
Jia Yao ◽  
Wei Lu ◽  
Chun Shan Liu

The specification of the vibration cutting loading is a decision factor for the generation of stress wave and the stress wave propagation has a significant impact on its micro-mechanism. Making the stress waves’ generation in the cutting area of vibration cutting for entry point, the analysis of internal inflection wave, inflection fracture and dynamic stress intensity factor has been carried out, the simulation of vibration cutting has also been done by finite element method, the essential of energy concentrated role, shear angle increment and cutting quality improvement has been explained.


Author(s):  
C. S. Florio

Abstract Much work has been done to create and understand means to control the propagation of acoustic and light waves through materials and structures. The ability to perform similar studies on the control of stress waves has implications not only for the development of capabilities to disrupt stress waves in order to limit their damage, but also to direct stress waves in order to tailor the behavior of a structure for a specific functional goal. Recent studies have demonstrated the use of voids and inclusions of varying size, geometry, arrangement, and composition in structures to attenuate impact forces or cloak stress waves in thin, flat, plane stress plates. However, many structures that may benefit from these wave modification methods are comprised of cylindrical shells. It is not currently known how well the techniques to control wave propagation and trends identified in plane stress plates can be applied to structures with cylindrical shells. Therefore, this study develops and uses computational modeling methods to examine the modification and control of stress waves induced by an axial impact load in metal plates of varying curvature through the inclusion of macroscale voids. Methods are developed and used in this work to study the response of metal plates of varying curvature with and without voids of different shapes and arrangement to axial impact loads. The response is quantified through the magnitude of the fixed end reaction force and through normal oscillations of discrete points along the length of the plate. Fast Fourier transformation and wavelet coherence techniques are used to understand both the time-averaged and time-dependent oscillation behavior. Correlations are drawn between plate curvature and void design on the control of the propagation of stress waves. The knowledge gained can help guide the understanding design of these stress wave modification features.


1971 ◽  
Vol 38 (4) ◽  
pp. 888-894 ◽  
Author(s):  
P. A. Tuschak ◽  
A. B. Schultz

For several types of excitation of one-dimensional elastic-plastic stress waves in a rod, unloading waves propagate which interact with the loading waves. The moving boundary at which this interaction occurs is the unloading boundary. A knowledge of the location of this boundary and the behavior exhibited on it is necessary for the solution of wave-propagation problems of this kind. A technique is presented to obtain an arbitrary number of terms in series expressions describing the response in semi-infinite rods. Several examples, including finite mass impact of the rod, are given to illustrate the use of the technique. The technique will determine the initial portion of the boundary in a finite length rod.


1985 ◽  
Vol 38 (10) ◽  
pp. 1276-1278 ◽  
Author(s):  
R. J. Clifton

Stress wave propagation is of fundamental importance in modern technology because it provides the primary means for the nondestructive examination of defects and in-homogeneities in opaque materials and the only means for studying the response of materials under the dynamic loading conditions associated with impact and explosions. Advances in such diverse technologies as nuclear reactor safety, integrated circuit inspection, and armor penetration depend strongly on advances in the modeling of the propagation of stress waves and in the improved characterization of the dynamic response of materials. Stress waves play a central role in a wide range of geotechnical and geophysical applications including reservoir exploration, earthquake monitoring, and the prediction of ground motion due to earthquakes and blast loading. Because of the inherent complexity of stress waves in solids (i.e., three wave speeds, anisotropy, and inhomogeneity), as well as the importance of nonlinearity in applications involving intense loading, progress in the modeling of stress wave phenomena depends critically on large scale computations. Increased availability of supercomputers provides an excellent opportunity for advances in the modeling of three dimensional phenomena, including such complicating features as anisotropy, inhomogeneity, defects, nonlinearity, and sliding interfaces. Research is needed on accurate and efficient algorithms for these calculations and for acoustic imaging which requires algorithms for inverse problems in which the size and shape of defects, as well as variations in density and in elastic moduli, are to be obtained by probing the region of interest with ultrasonic waves. Improved characterization of the sources and receivers of ultrasound is essential for reliable determination of the required geometrical features and material properties. Improved understanding of the dynamic inelastic response of materials is crucial to realizing the full benefits of the emerging computational power. Strain rate sensitivity, shear strain localization, crack propagation, twinning, and phase transformations are all aspects of mechanical response that need to be modeled in many dynamic loading applications. Basic experiments on these aspects of material behavior combined with computer simulation of the experiments should lead to significant progress in understanding the underlying mechanisms and, thereby, to improved models for use in computations.


2006 ◽  
Vol 22 (2) ◽  
pp. 161-165 ◽  
Author(s):  
P. M. Reddy ◽  
M. Tajuddin

AbstractBiot's poroelastic theory is employed to study stress wave propagation in an infinite slab of arbitrary thickness. The frequency equation is obtained each for pervious and impervious surfaces for a nondissipative medium. Appropriate numerical data is presented in the form of graphs and then results are discussed. Waves in a thin bar and in a semi-infinite slab are discussed as limiting cases.


2021 ◽  
Vol 11 (17) ◽  
pp. 7873
Author(s):  
Qian Dong ◽  
Xinping Li ◽  
Yongsheng Jia ◽  
Jinshan Sun

The initial stresses have a strong effect on the mechanical behavior of underground rock masses, and the initial stressed rock masses are usually under strong dynamic disturbances such as blasting and earthquakes. The influence mechanism of a blasting excavation on underground rock masses can be revealed by studying the propagation of stress waves in them. In this paper, the improved Mohr-Coulomb elasto-plastic constitutive model of the intact rock considering the initial damage was first established and numerically implemented in Universal Distinct Element Code (UDEC) based on the variation of the experimental stress wave velocity in the initial stressed intact rock, and the feasibility of combining the established rock constitutive model and the BB (Bandis-Barton) model which characterizes the nonlinear deformation of the joints to simulate stress waves across jointed rock masses under initial stress was validated by comparing the numerical and model test results subsequently. Finally, further parameter studies were carried out through the UDEC to investigate the effect of the initial stress, angle, and number of joints on the transmission of the blasting stress wave in the jointed rock mass. The results showed that the initial stress significantly changed the propagation of the stress waves in the jointed rock mass. When the initial stress was small, the transmission coefficients of the stress waves in the jointed rock were vulnerable to be influenced by the variation of the angle and the number of joints, while the effect of the angle and the number of joints on the stress wave propagation gradually weakened as the initial stress increased.


2018 ◽  
Vol 24 (3) ◽  
pp. 101-106
Author(s):  
Nicolae Iliescu ◽  
Vasile Nastasescu ◽  
Ghiță Barsan

Abstract In the first part of the paper, using the numerical simulations with FEM and the results of some investigations made with different experimental techniques, a calculation methodology was developed for the study of the stress waves propagation in the short tronconical bars subjected at axial impact. Because a good agreement between data obtained from numerical analysis and experimental investigations was observed, the numerical model of calculus conceived for this study was considered validated. The calculus model established was used to investigate other aspects connected of stress wave propagation in the short tronconical bars. In the second part of the paper, using established calculus model and numerical analysis with Finite Element Method the influence of bar conicity on stress wave propagation and on stress distribution in different cross sections of the bar was analyzed


Sign in / Sign up

Export Citation Format

Share Document