Adsorption of Congo Red from Aqueous Solution onto Chitosan/Rectorite Composite

2013 ◽  
Vol 690-693 ◽  
pp. 438-441 ◽  
Author(s):  
Tao Feng ◽  
Lei Xu

The chitosan/rectorite composite was prepared and characterized by XRD. The interlayer distance of rectorite was enlarged from 2.53 nm to 3.01 nm. Congo red (CR) was selected as a model anionic dye and the adsorption tests of CR onto chitosan/rectorite composite were carried out. The results showed that the CR adsorption process is dependent on pH and initial CR concentration and temperature. The maximal CR uptake by chitosan/rectorite composite was 73.8 mg g-1 in the test. Adsorption kinetics studies indicated that the sorption processes were better fitted by pseudo-second order equation.

2020 ◽  
Vol 9 (2) ◽  
pp. 108-116
Author(s):  
Tarmizi Taher ◽  
◽  
Nyanyu Ummu Hani ◽  
Neza Rahayu Palapa ◽  
Risfidian Mohadi ◽  
...  

In this work, two synthetic layered double hydroxides (LDH) consists of Zn2+ as M2+ cation with different M3+ cation, i.e., Al3+ and Cr3+ were used as an adsorbent for Congo Red removal aqueous solution. Both Zn-Al and Zn-Cr LDH were characterized by X-ray diffraction, FT-IR, and BET surface area analyzer. The effect of contact time, initial dye concentration, and temperature were evaluated in a batch technique in order to investigate the characteristic of Congo Red adsorption onto both adsorbents. The experimental data were assessed according to the parameter of adsorption kinetics, isotherm, and thermodynamics. The results of LDH characterization showed that Zn-Al LDH has a higher interlayer distance than Zn-Cr LDH, although Zn-Cr LDH has a higher surface area. The FT-IR analysis indicated the interlayer space of both Zn-Cr and Zn-Al LDH was dominated by CO32- as the interlayer anion species. The adsorption kinetics study of Congo Red on both LDH revealed that the adsorption process followed the pseudo-second-order model. For the adsorption isotherm, the experimental data fit well with the Freundlich model rather than the Langmuir model. The thermodynamic study indicated that the adsorption process that occurred on both adsorbents was spontaneous with exothermic nature.


2011 ◽  
Vol 356-360 ◽  
pp. 208-216
Author(s):  
Jiang Ying Zhang ◽  
Jian Xu ◽  
Yuan Zhang ◽  
Lei Li ◽  
Ying Zhang ◽  
...  

In the present paper, the adsorption characteristics of aniline onto KSF montmorillonite from aqueous solution were investigated. Experiments were conducted at various pH values, temperatures, ionic strength and surfactant concentrations. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were adopted to investigate the rate parameters, and the pseudo-second-order equation was proved to be able to successfully predict whole process. Optimal adsorption pH was determined at 3.6. Among the selected models (linear, Langmuir, Freundlich, DR (Dubinin–Radusckevich) models), linear and DR models were found to be better fit the experimental data, which revealed the physisorption nature of the adsorption process. Meanwhile, with the increase of reaction temperatures, the adsorption capacity decreased. The results of the calculated thermodynamic parameters demonstrated that the adsorption was an exothermic, spontaneous and unfavorable process.


Author(s):  
Sarang Agarwal ◽  
Sowmya Vilvanathan ◽  
Shanthakumar S

The present study evaluates the feasibility of an adsorbent prepared from Annona squamosa (custard apple) peel, in removing Congo red dye from its aqueous solution. Batch experiments were carried out to study the effect of various parameters like pH (2-8), adsorbent dose (0.005-0.5 g/100mL), contact time (5-120 min), initial dye concentration (25-200 mg/L) and temperature (298-308 K) to determine its effectiveness as an adsorbent. Maximum dye removal attained at pH 2, adsorbent dose 0.1 g/100mL in equilibrium time of 45 min at 308K. Adsorption kinetics using pseudo-first order and pseudo-second order models, and adsorption isotherm using Langmuir and Freundlich models were studied. The adsorption process was found to follow pseudo-second order kinetic model and more favourably described the Langmuir isotherm model. The Gibbs free energy was found to be negative, signifying the spontaneous nature of the adsorption process. Removal of Congo red dye from its aqueous solution by custard apple peel was found to be an endothermic process. The results of the present study suggest that custard apple can be effectively used as an adsorbent to remove Congo red dye from aqueous solution.


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


2014 ◽  
Vol 809-810 ◽  
pp. 907-911
Author(s):  
Jun Long Wang ◽  
Jie Hou ◽  
Ting Jiang ◽  
Yong Jun He ◽  
Yao Dong Liang

Dry waters with an average diameter of 82 μm were prepared by a high speed mixed route. The formaldehyde absorption kinetics of dry waters was investigated by simulating indoor formaldehyde pollution in glass chamber. The results showed that pseudo-second order model could be used to simulate the adsorption process; the adsorption rate was highest in the initial 60 minutes; when the adsorption lasted for 180 minutes, the adsorption reached equilibrium.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2133 ◽  
Author(s):  
Xuli Li ◽  
Yue Zeng ◽  
Fangyuan Chen ◽  
Teng Wang ◽  
Yixin Li ◽  
...  

Zeolite analcime (EMANA) was synthesized through the hydrothermal method by using carbothermal reduction electrolytic manganese residue (CR-EMR). The structural properties of EMANA and CR-EMR were studied using various characterization techniques. After hydrothermal synthesis, the CR-EMR became super-microporous, and the surface area increased by 4.76 times than before. Among the various synthesized zeolites, 6 h-synthesized EMANA was selected as the best adsorbent for macrolide antibiotics in aqueous solution. The adsorption performance of EMANA on the adsorption capacity was examined by using various experimental parameters, such as contact time (0–24 h), initial concentration (50–300 mg/L), temperature (30–50 °C) and pH (3–13). The experimental results were also analyzed by the Langmuir and Freundlich adsorption models, with the latter obtaining better representation. The adsorption process could be described well by the pseudo-second-order model, even under a low concentration (50 mg/L). This result suggests that the adsorption process of macrolide antibiotics is due to chemisorption. According to the Fourier Transform infrared spectroscopy (FT-IR) results, the adsorption of zeolite was mainly due to its hydroxyl group, which played an important role during the adsorption process. Moreover, EMANA is more suitable for treatment of roxithromycin (ROX) than azithromycin (AZM), because ROX has more adsorption sites for the hydroxyl group.


Author(s):  
Nur Hidayatul Nazirah Kamarudin ◽  
Herma Dina Setiabudi ◽  
Aishah Abdul Jalil ◽  
Siti Hazirah Adam ◽  
Nur Fatien Muhamad Salleh

This study applied ultrasonic irradiation technique to remove acid orange 52 (AO52) and in the meantime utilizing the potential adsorbent, Lapindo volcanic mud (LVM). LVM was collected from the erupted mud in Sidoarjo, Indonesia and calcined prior the adsorption process. Previously in another study, Lapindo was proven to be efficient for adsorption of dyes in single adsorption method. In this study, the combination of adsorption with ultrasound, or as known as sono-sorption shows that the adsorptivity increased from 95.54 mg/g to 129.5 mg/g. The isotherm study shows that this process obeyed Langmuir isotherm model with adsorption capacity of 833.33 mg/g. The enhancement of sono-sorption method as compared to conventional method is believed to be resulted from the facilitated mass transfer driven by the ultrasound, along with the adsorption ability of LVM. The kinetic study fit to the pseudo second order equation. Copyright © 2019 BCREC Group. All rights reservedReceived: 1st October 2018; Revised: 22nd December 2018; Accepted: 7th January 2019; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Kamarudin, N.H.N., Setiabudi, H.D., Jalil, A.A., Adam, S.H., Salleh, N.F.M. (2019). Utilization of Lapindo Volcanic Mud for Enhanced Sono-sorption Removal of Acid Orange 52. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 189-195 (doi:10.9767/bcrec.14.1.3326.189-195)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.3326.189-195  


Author(s):  
Jurgita Seniūnaitė ◽  
Rasa Vaiškūnaitė ◽  
Kristina Bazienė

Research studies on the adsorption kinetics are conducted in order to determine the absorption time of heavy metals on coffee grounds from liquid. The models of adsorption kinetics and adsorption diffusion are based on mathe-matical models (Cho et al. 2005). The adsorption kinetics can provide information on the mechanisms occurring be-tween adsorbates and adsorbents and give an understanding of the adsorption process. In the mathematical modelling of processes, Lagergren’s pseudo-first- and pseudo-second-order kinetics and the intra-particle diffusion models are usually applied. The mathematical modelling has shown that the kinetics of the adsorption process of heavy metals (copper (Cu) and lead (Pb)) is more appropriately described by the Lagergren’s pseudo-second-order kinetic model. The kinetic constants (k2Cu = 0.117; k2Pb = 0,037 min−1) and the sorption process speed (k2qeCu = 0.0058–0.4975; k2qePb = 0.021–0.1661 mg/g per min) were calculated. After completing the mathematical modelling it was calculated that the Langmuir isotherm better reflects the sorption processes of copper (Cu) (R2 = 0.950), whilst the Freundlich isotherm – the sorption processes of lead (Pb) (R2 = 0.925). The difference between the mathematically modelled and experimen-tally obtained sorption capacities for removal of heavy metals on coffee grounds from aqueous solutions is 0.059–0.164 mg/l for copper and 0.004–0.285 mg/l for lead. Residual concentrations of metals in a solution showed difference of 1.01 and 0.96 mg/l, respectively.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


Clay Minerals ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 429-440 ◽  
Author(s):  
S. Gamoudi ◽  
N. Frini-Srasra ◽  
E. Srasra

AbstractThe use of organoclays as adsorbents in the remediation of polluted water has been the subject of many recent studies. In the present work, a Tunisian smectite modified with two cationic surfactants was used as an adsorbent to examine the adsorption kinetics, isotherms and thermodynamic parameters of fluoride ions from aqueous solution. Various pH values, initial concentrations and temperatures have been tested. Two simplified kinetic models, first-order and pseudo-second-order, were used to predict the adsorption rate constants. It was found that the adsorption kinetics of fluoride onto modified smectites at different operating conditions can best be described by the pseudo-second-order model. Adsorption isotherms and equilibrium adsorption capacities were determined by the fitting of the experimental data to well known isotherm models including those of Langmuir and Freundlich. The results showed that the Langmuir model appears to fit the adsorption better than the Freundlich adsorption model for the adsorption of fluoride ions onto modified smectites. The equilibrium constants were used to calculate thermodynamic parameters, such as the change of free energy, enthalpy and entropy. Results of this study demonstrated the effectiveness and feasibility of organoclays for the removal of fluoride ions from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document