Research on Aerodynamic Characteristics of Lateral Jet Control Technology

2013 ◽  
Vol 709 ◽  
pp. 253-256
Author(s):  
Xing Xu ◽  
Jun Hu

This paper takes N-S equation as the basic control equation, selects turbulence model, and adopts the sliding mesh technology to conduct numerical simulation for the interference of missile jet flow and inflow on the flow field in different flow conditions. The results indicate that: the lift coefficient, drag coefficient and pressure center coefficient of missile body change with the changes of flowMach number and attack angle. The lift coefficient increases with the increase of Mach number in subsonic speed, decreases with the increase of Mach number in supersonic speed, and reaches a maximum value with the increase of Mach number in transonic speed. The change rule of drag coefficient and pressure center coefficient is the same as that of lift coefficient. That is, they increase with the increase of Mach number in subsonic speed, and decrease with the increase of Mach number in supersonic speed.

2011 ◽  
Vol 201-203 ◽  
pp. 89-92 ◽  
Author(s):  
Jia Xian Zhang ◽  
Yan Na Wang ◽  
Rui Min Liu

Three-dimensional Reynolds-averaged Navier-Stokes simulations have been performed to explore the aerodynamic characteristics of ramjet projectiles. The turbulence model used is the RNG k-ε model. The numerical algorithms termed total variational diminishing (TVD) was adopted. The complex wave structures of ramjet projectiles with different architecture at different inflow Mach number were achieved by numerical simulation. The influence of inflow Mach number on aerodynamic characteristics and pressure center of ramjet projectiles were analyzed. Results show that lift coefficient and pressure center increase with the argument of inflow Mach number. Ramjet projectiles with different architecture have different drag coefficient trend.


2013 ◽  
Vol 661 ◽  
pp. 132-136
Author(s):  
Na Wang ◽  
Chao Gao

For the sake of improve the veracity and the reliability of the simulating the configuration of the bound layer above of the aircraft by manual fixed transition, discussing the influence of the dynamic coefficient and pressure coefficient of different types of the carborundum strip to enhance the efficiency of the experiment which of 3mm width from the leading edge at the location of 7% chord. At subsonic condition of Mach number is 0.5, The characteristic of the lift coefficient keeps insensitive of three breakage, and the drag coefficient shows the influence coming forth after attack angle greater than 6 degree, and the infection less as the breakage longer instance of the symmetry. When Mach number is 0.75, lift coefficient and drag coefficient shows the influence coming forth after attack angle is equal or greater than 6 degree, and the infection less as the breakage be longer instance of the symmetry.


Author(s):  
Marcin Figat ◽  
Agnieszka Kwiek

This paper presents the results of a numerical study of the aerodynamic shape of the Rocket Plane LEX. The Rocket Plane is a main part of the Modular Airplane System – MAS; a special vehicle devoted to suborbital tourist flights. The Rocket Plane was designed for subsonic and supersonic flight conditions. Therefore, the impact of the Mach number should be considered during the aerodynamic design of the Rocket Plane. The main goal of the investigation was to determine the sensitivity of the Rocket Plane aerodynamic characteristics to the Mach number during the optimisation of the LEX geometry. The paper includes results of the optimisation process for Mach number from the range Ma = 0.5 to Ma = 2.5. These results reveal that the aerodynamic characteristics of models optimised for the subsonic and transonic regime of Mach numbers (up to Ma = 1) were also improved for the supersonic speed regime. However, in the case of models optimised for the supersonic flight regime the aerodynamic characteristics in subsonic flight regime, are inferior compared to the model before the optimisation process.


2012 ◽  
Vol 225 ◽  
pp. 38-42
Author(s):  
Zurriati Mohd Ali ◽  
Wahyu Kuntjoro ◽  
Wisnoe Wirachman

This paper presents a study on the effect of canard setting angle on the aerodynamic characteristic of a Blended Wing Body (BWB). Canard effects to BWB aerodynamic characteristics are not widely investigated. Hence the focus of the study is to investigate the variations of lifts, drags and moments when the angles of attack are varied at different canard setting angles. Wind tunnel tests were performed on BWB aircraft with canard setting angles,  ranging from -20˚ to 20˚. Angles of attack,  were varied from -10˚ to 10˚. Aspect ratio and canard planform area were kept fixed. All tests were conducted in the subsonic wind tunnel at Universiti Teknologi MARA, at Mach number of 0.1. The streamlines flow, at the upper surface of the canard was visualized using mini tuft. Result shows that the lift coefficient does not change much with different canard setting angles. As expected, the lift coefficient increases with increasing angles of attack at any canard setting angle. In general, the moment coefficient increases as the canard setting angle is increased. The results obtained in this research will be of importance to the understanding of aerodynamic behavior of BWB employing canard in its configuration.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun Abdul Malek ◽  
Shuhaimi Mansor ◽  
Nor Azwadi Che Sidik ◽  
Agoes Priyanto

Wing configuration is a parameter that affects the performance of wing-in-ground effect (WIG) craft. In this study, the aerodynamic characteristics of a new compound wing were investigated during ground effect. The compound wing was divided into three parts with a rectangular wing in the middle and two reverse taper wings with anhedral angle at the sides. The sectional profile of the wing model is NACA6409. The experiments on the compound wing and the rectangular wing were carried to examine different ground clearances, angles of attack, and Reynolds numbers. The aerodynamic coefficients of the compound wing were compared with those of the rectangular wing, which had an acceptable increase in its lift coefficient at small ground clearances, and its drag coefficient decreased compared to rectangular wing at a wide range of ground clearances, angles of attack, and Reynolds numbers. Furthermore, the lift to drag ratio of the compound wing improved considerably at small ground clearances. However, this improvement decreased at higher ground clearance. The drag polar of the compound wing showed the increment of lift coefficient versus drag coefficient was higher especially at small ground clearances. The Reynolds number had a gradual effect on lift and drag coefficients and also lift to drag of both wings. Generally, the nose down pitching moment of the compound wing was found smaller, but it was greater at high angle of attack and Reynolds number for all ground clearance. The center of pressure was closer to the leading edge of the wing in contrast to the rectangular wing. However, the center of pressure of the compound wing was later to the leading edge at high ground clearance, angle of attack, and Reynolds number.


Author(s):  
P. A. Krasheninnikov

The paper describes the impact of aerodynamic coefficients on the ballistic target (BT) velocity and proposes a method of approximation of the dependence of ballistic target drag coefficient Cxa on the Mach number and angle of attack. The paper proves that the proposed approach allows to substantially reduce errors in drag coefficient simulation, but requires a more complicated calculation process.


2020 ◽  
Vol 01 (02) ◽  
pp. 29-36
Author(s):  
Md Rhyhanul Islam Pranto ◽  
Mohammad Ilias Inam

The aim of the work is to investigate the aerodynamic characteristics such as lift coefficient, drag coefficient, pressure distribution over a surface of an airfoil of NACA-4312. A commercial software ANSYS Fluent was used for these numerical simulations to calculate the aerodynamic characteristics of 2-D NACA-4312 airfoil at different angles of attack (α) at fixed Reynolds number (Re), equal to 5×10^5 . These simulations were solved using two different turbulence models, one was the Standard k-ε model with enhanced wall treatment and other was the SST k-ω model. Numerical results demonstrate that both models can produce similar results with little deviations. It was observed that both lift and drag coefficient increase at higher angles of attack, however lift coefficient starts to reduce at α =13° which is known as stalling condition. Numerical results also show that flow separations start at rare edge when the angle of attack is higher than 13° due to the reduction of lift coefficient.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012069
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract Based on CFD, the flow field characteristics of NACA4412 airfoil are analyzed under pitching motion, and its aerodynamic characteristics are interpreted. The results show that streamline changes on the upper surface of the airfoil play a decisive role in the aerodynamic characteristics. The interaction between the vortex leads to fluctuations in the lift and drag coefficients. Under a big angle of attack, the secondary trailing vortex on the upper surface of the airfoil adheres to the trailing edge of the airfoil, resulting in an increased drag coefficient. Under a small angle of attack, the secondary trailing vortex can break away from the airfoil. The lift coefficient reaches the maximum value of 2.961 before the airfoil is turned upside down, and the drag coefficient reaches the maximum value of 1.515 after the airfoil is turned upside down, but the corresponding angles of attack of the two are equal.


Author(s):  
Ryoji Kojima ◽  
Donghi Lee ◽  
Tomoaki Tatsukawa ◽  
Taku Nonomura ◽  
Akira Oyama ◽  
...  

The effects of aspect ratio and Reynolds number on aerodynamic characteristics of three-dimensional rectangular wing at low Reynolds number of 103 to 105, are investigated with Reynolds-averaged Navier-Stokes solver with the Baldwin-Lomax model. Present results show that lift coefficient decreases drastically at lower aspect ratio than 4. Besides, the much larger viscous drag coefficient is obtained at the lower Reynolds number, especially lower than 104. In order to focus on designing practical wings, the particular cases under the condition of fixed wing-surface area and fixed main stream velocity are conducted. The results show that there is trade-off between the decrease in viscous drag coefficient with increasing Reynolds number and the increase in lift coefficient with increasing aspect ratio. At the lower Reynolds number condition, as the former effect is stronger than the latter one, maximum lift-to-drag ratio is obtained at lower aspect ratio.


Author(s):  
Sivaraj Gopal Krishnan ◽  
Mohammad Hafifi Ishak ◽  
Mohammad Azwan Nasirudin ◽  
Farzad Ismail

This work describes the aerodynamic characteristics of an aircraft wing model with a Rüppell’s griffon vulture (RGV)-type winglet. A computational fluid dynamics (CFD) study using ANSYS 15.0 was conducted to study the effect of the RGV winglet on a rectangular wing. The NACA 65(3)-218 wing consists of 660 mm span and 121 mm chord length where the aspect ratio is 5.45. Eight different winglet configurations have been studied. Furthermore, the study is extended to study effect of cant angle and different angles of attack (AOA) to the winglet. A comparative study is done on aerodynamic features such as lift coefficient (CL), drag coefficient (CD), lift/drag ratio (CL/CD) and tip vortices to get the best RGV winglet design. The RGV winglet achieved highest CL compared to other types of winglets configuration. Based on contour plot analysis, the RGV winglet shows lower vortex formation compared to without winglet. The results show about 15 to 30% reduction in drag coefficient and 5 to 25% increase in lift coefficient by using an RGV winglet.


Sign in / Sign up

Export Citation Format

Share Document