Control Factors of Chang 4+5 Reservoir Properties in Jiyuan Oilfield

2013 ◽  
Vol 734-737 ◽  
pp. 1171-1174
Author(s):  
Qi Zhou ◽  
Yan Yi Yin

Discovered in recent years, Chang 4+5 reservoir group of Yanchang Formation in Jiyuan area is ultra-low permeability reservoir. The evaluation and prediction of the reservoir is the most critical technology in reservoir development. Comprehensive analysis with multiple research approaches shows that the storage potential of the ultra-low permeability reservoir is jointly controlled by sedimentation and diagenesis. Sedimentary factor includes lithology and sedimentary facies, two basic factors affecting the storage potential. The reservoir lithology is of fine-grained debris-arkose and miliary arkose. Pore types are mainly intergranular pores and dissolved pores. The sandstone microfacies in the delta front underwater distributary channel has the best storage potential. Diagenetic factors, including diagenesis types, evolution, intensity, combination etc., have direct influence on the reservoir storage potential. Compaction and calcite cementation are the main factors that weaken the storage potential, whereas carbonate dissolution, especially the dissolution of feldspar plays an important role in the improvement of the storage potential.

2015 ◽  
Vol 1092-1093 ◽  
pp. 1410-1415
Author(s):  
Yuan Kang ◽  
Wei Sun ◽  
Ting Shang ◽  
Jian Chao Shi ◽  
Jun Sheng

The Xishanyao reservoir in Niuquanhu area is a typical low permeability reservoir Diagenesis is very important for the physical property of reservoir. Through analyzed data of cast thin sections and scanning electron microscopy (SEM) data, analyzed the impact of main diagenesis on reservoir properties in Niuquanhu area. First, quantitative analyzed the various types of diagenesis on reservoir porosity contribution rate. Second, through restoring the original porosity, quantitative analyzed the pore evolution of reservoir caused by various types of diagenesis. Realized the quantitative analysis of porosity of each diagenesis stage. The quantitative calculation results agree well with the experimental analysis results, the error is 1.09%~1.51%, which showed the rationality of research method and the research results have certain reliability. The study of diagenesis has important significance for fine evaluation and favorable area prediction of Niuquanhu area reservoir.


2013 ◽  
Vol 772 ◽  
pp. 755-760
Author(s):  
Shao Yuan Mo ◽  
Shun Li He ◽  
Shuai Wang ◽  
Hai Yong Zhang ◽  
Li Jing Chang ◽  
...  

Fractured-horizontal well can effectively reduce the percolation resistance near wellbore, improve the fluid mobility and enhance the production. However, in Chang 6 ultra-low permeability reservoir, BaiBao block, HuaQing oilfield, the efficiency of fractured-horizontal well is highly poor due to the production swiftly down and water cut sharply up. For studying the unsatisfying oil development by fractured-horizontal well in HuaQing oil field, the evaluation of reservoir properties and the option of stratum for fractured-horizontal well application have been performed based on the practical geological model of BaiBao block in HuaQing oil field. The numerical simulation is used to study the effect of reservoir permeability, Thickness and Aeolotropism on the production and to optimize the horizontal length, fracture spacing, half length and conductivity. The conclusion shows that Chang 63 stratum is qualified for fractured-horizontal well application. Through the practical geological model, the optimizations of horizontal length range, fracture spacing, half length and conductivity are 800m to 1200m, 77m, 150m, and 15μm2cm, respectively. The results can be conducted for fractured-horizontal well application in HuaQing oil field.


2018 ◽  
pp. 39-43
Author(s):  
A. V. Klimov-Kayanidi ◽  
R. T. Alimkhanov ◽  
E. S. Agureeva ◽  
R. M. Sabitov

Achimov sequence is characterized by high heterogeneity and low reservoir properties, that makes it impossible economically profitable field development without hydraulic fracturing and usage reservoir pressure maintenance systems. The research aims to develop recommendations for regulating the operations of injection wells, in conditions of waterflood-induced fracture formation. The recommendations can be used to further regulate the waterflooding system for the conditions of Achimov sequence.


2014 ◽  
Vol 7 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Haiyong Zhang ◽  
Shunli He ◽  
Chunyan Jiao ◽  
Guohua Luan ◽  
Shaoyuan Mo

2019 ◽  
Vol 946 ◽  
pp. 380-385
Author(s):  
Boris A. Chaplygin ◽  
Viacheslav V. Shirokov ◽  
Tat'yana A. Lisovskaya ◽  
Roman A. Lisovskiy

The strength of abrasive wheels is one of the key factors affecting the performance of abrasive machining. The paper discusses ways to improve the strength of abrasive wheels. The stress-state mathematical model presented herein is a generalization of the existing models. It is used herein to find for the first time that there are numerous optimal combinations of the elastic modulus and reinforcing material density, which result in the same minimum value of the objective function. It is found out that increasing the radius of the reinforcing component while also optimizing the mechanical properties of its material may increase the permissible breaking speed of the wheel several times. We herein present a regression equation and a nomogram for finding the optimal combination of control factors. Conventional methods for testing the mechanical properties of materials, which have been proven reliable for testing metals and alloys, are not as reliable for testing abrasive materials, as the test results they generate are not sufficiently stable or accurate. We therefore propose an alternative method that does not require any special equipment or special studies.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 653
Author(s):  
Shereef Bankole ◽  
Dorrik Stow ◽  
Zeinab Smillie ◽  
Jim Buckman ◽  
Helen Lever

Distinguishing among deep-water sedimentary facies has been a difficult task. This is possibly due to the process continuum in deep water, in which sediments occur in complex associations. The lack of definite sedimentological features among the different facies between hemipelagites and contourites presented a great challenge. In this study, we present detailed mudrock characteristics of the three main deep-water facies based on sedimentological characteristics, laser diffraction granulometry, high-resolution, large area scanning electron microscopy (SEM), and the synchrotron X-ray diffraction technique. Our results show that the deep-water microstructure is mainly process controlled, and that the controlling factor on their grain size is much more complex than previously envisaged. Retarding current velocity, as well as the lower carrying capacity of the current, has an impact on the mean size and sorting for the contourite and turbidite facies, whereas hemipelagite grain size is impacted by the natural heterogeneity of the system caused by bioturbation. Based on the microfabric analysis, there is a disparate pattern observed among the sedimentary facies; turbidites are generally bedding parallel due to strong currents resulting in shear flow, contourites are random to semi-random as they are impacted by a weak current, while hemipelagites are random to oblique since they are impacted by bioturbation.


Sign in / Sign up

Export Citation Format

Share Document