Comparison Friction and Wear Properties of Overbased Calcium Sulfonate Complex Grease and Polyurea Grease

2013 ◽  
Vol 734-737 ◽  
pp. 2484-2487
Author(s):  
Yong Jian Gao ◽  
Xiang Yu Ge ◽  
Zhen Zhong Wen ◽  
Yan Qiu Xia

The friction and wear properties of the overbased calcium sulfonate complex grease and polyurea grease were evaluated using an Optimol SRV reciprocating friction and wear tester under the boundary lubrication conditions. The morphologies of the worn surfaces of the AISI 52100 steel discs were observed using a scanning electron microscope (SEM). In addition, the elemental compositions and chemical states of several typical elements on the worn surfaces of the AISI 52100 steel discs were examined by means of X-ray photoelectron spectroscopy (XPS). The results show that the overbased calcium sulfonate complex greases and polyurea grease have stable friction coefficients as low as 0.10-0.11. The calcium sulfonate complex grease has better wear resistance properties than polyurea grease, polyurea grease has better reducing friction properties than calcium sulfonate complex grease, According to the XPS analyses, it is considered that the formation of tribochemical films led to lower friction coefficient and high wear resistance.

2011 ◽  
Vol 314-316 ◽  
pp. 143-146
Author(s):  
Xin Feng ◽  
Yan Qiu Xia

AISI 1045 steels were laser-clad with Ni-based powder by CO2 HJ-4 coherent laser. The phase composition of the laser-cladding coating was investigated by means of X-ray diffraction (XRD). The cross-section of the cladding coating was observed using a scanning electron microscopy (SEM). The friction and wear properties of the laser cladding coatings sliding against AISI 52100 steel under the lubrication of liquid paraffin containing various anti-wear and extreme pressure additives were investigated using an Optimol SRV reciprocating motion friction and wear tester. Results showed that the laser-cladding coating considerably decreased coefficient of friction and increased wear resistance in sliding against AISI 52100 steel and attributed to the change in the hardness, phase composition of the laser-cladding coating and tribochemical reactions between the laser-cladding coating and the extreme pressure and anti-wear additives.


2011 ◽  
Vol 189-193 ◽  
pp. 1288-1291
Author(s):  
Li Ning Wu ◽  
Xin Feng ◽  
Yan Qiu Xia ◽  
Jun Ying Hao

The friction and wear properties of AISI 52100 steel and DLC coatings were evaluated while being lubricated with silicone oil, PAO and PAG lubricants by using a reciprocating ball-on-disk sliding UMT tester. The morphologies of original surface and worn surfaces for the DLC and Ti doped DLC coatings were observed by using a scanning electron microscope. The results show that the DLC coatings have better tribological properties than AISI 52100 steel under silicone oil, PAO and PAG lubrication conditions. In addition, the DLC coatings have much better wear resistance than the AISI 52100 steel.


2007 ◽  
Vol 353-358 ◽  
pp. 852-855 ◽  
Author(s):  
Yan Qiu Xia ◽  
Shinya Sasaki ◽  
Takashi Murakami ◽  
Miki Nakano

The friction and wear properties of phosphor bronze discs sliding against SAE52100 steel balls were evaluated using an Optimol SRV reciprocating friction and wear tester under the lubrication of pure poly-alpha-olefin (PAO) and PAO containing commercial phosphite ester, zinc dialkyldithiophosphate (ZDTP) and oleic acid additives. The morphologies of the worn surfaces of the phosphor bronze discs were observed using a scanning electron microscope (SEM). In addition, the elemental compositions and chemical states of several typical elements on the worn surfaces of the phosphor bronze discs were examined by means of X-ray photoelectron spectroscopy (XPS). The findings indicated that the phosphor bronze discs exhibited higher wear resistance under the lubrication of PAO containing phosphite ester than pure PAO, PAO containing ZDTP, and PAO containing oleic acid. Also, the phosphor bronze discs exhibited stable friction coefficients as low as 0.09-0.11 when lubricated with PAO containing phosphite ester. According to the XPS analyses, it was considered that the formation of CuO and phosphate led to lower friction coefficient and high wear resistance of phosphor bronze specimens lubricated with PAO containing phosphite ester. In the case of the phosphor bronze specimens lubricated with PAO containing ZDTP and oleic acid, the formation of organic compounds seemed to lead to lower friction coefficient, but did not seem to affect the wear resistance.


2009 ◽  
Vol 610-613 ◽  
pp. 853-858 ◽  
Author(s):  
Xiao Jing Xu ◽  
Deng Fu Xia

The nano-indentation response and the friction/wear properties of DLC/SiC (diamond-like carbon/silicon carbon) double layer thin films deposited on Mg alloy (AZ91D) substrate using magnetron sputtering technique at room temperature were investigated. The results show that the DLC films displayed low nano-hardness (3.05 GPa), low Young's modulus (24.67 GPa) but high hardness-to-modulus ratio (0.124). The films-substrate system exhibited a good friction and wear properties with the mean friction coefficient of about 0.175, the special wear rate in the magnitude order of 10−6 mm3 m−1 N−1 together with little film-cracking and interface-delaminating, when sliding against Si3N4 (silicon nitride) ball using ball-on-disc wear tester under dry frictional condition. The high wear-resistance is in accordance with high ductility of the films, good modulus match in the films-substrate system, and high hardness-to-modulus ratio of the films. The underlying factors are discussed and are believed to be due to the substrate is Mg, a metal with high activity.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


2013 ◽  
Vol 645 ◽  
pp. 133-136
Author(s):  
Peng Qiao ◽  
Yan Qiu Xia ◽  
Xiang Yu Ge

Overbased calcium sulfonate complex greases have excellent friction and wear properties and have been widely used in metallurgy and mining equipment. The effects and tribological performance of molybdenum dialkydithiocarbamate (MoDTC) and ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([C2OHMim][NTf2]), 1-(2-hydroxyethyl)-3-hexylimidazolium bis (trifluoromethylsulfonyl) imide ([C2OHHim][NTf2s]), added in overbased calcium sulfonate complex grease as additives were investigated by using reciprocating ball-on-disk sliding friction tester. The results showed that the two kinds of additives with a certain range of concentration could improve the tribological properties of greases.


2007 ◽  
Vol 280-283 ◽  
pp. 1327-1330
Author(s):  
Chien Cheng Liu ◽  
Jow Lay Huang

The effects of TiN addition to Si3N4 on its mechanical and wear properties were investigated. The size and content of TiN particles were found having effects on the strength and toughness of Si3N4-based composites. The friction and wear behavior of Si3N4 based composites against AISI-52100 steel were investigated in the ball -on- disc mode in a non-lubrication reciprocation motion. It has been found that under the conditions used all the ceramic components exhibited rather low friction and wear coefficients. For monolithic silicon nitride materials, high friction coefficients between 0.6 and 0.7 and wear coefficients between 1.63 × 10-8 and 1.389 × 10-6 mm3/N.m were measured. The contact load was varied from 100 to 300 N. By adding titanium nitride, the friction coefficients was reduced to a value between 0.4 and 0.5 and wear coefficients between 1.09×10-8 and 0.32×10-6 mm3/N.m at room temperature.


2020 ◽  
Vol 12 (6) ◽  
pp. 806-809
Author(s):  
Ghanshyam Dass ◽  
Anil Kumar ◽  
Manoj Kumar Kushwaha

Friction and wear properties of NAAO templates were calculated in affinity to pore dimensions and applied load. Homogeneously uniformly decorative synthesized by anodization of nanoporous aluminium oxide films having 65–95 μm thick and pores of 143.5, 105, 84.4 nm diameter. A tribological competency of the material checked out with loads and 250 rpm on the pin on a dry wear disc. The anodized NAAO sample has wear resistance increased by 25% as compared to the non-anodized sample. The pore density little bit impressed the frictional characters of NAAO template. We counsel that these course templates basically contribute to the reduction of friction distrait the pore structure by proving energy-dispersive spectroscopy (EDS).


2017 ◽  
Vol 37 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Qi Liu ◽  
Wei Luo ◽  
Shengtai Zhou ◽  
Huawei Zou ◽  
Mei Liang

Abstract The friction and wear properties of polyoxymethylene/polytetrafluoroethylene (POM/PTFE) composites were investigated by using a block-on-ring friction tester and special focus was paid to the effect of weight average molar mass (Mw) of POM. To study the thermodynamic characteristics and wear mechanism of composites, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. Results showed that friction and wear properties of the composite blends were strongly affected by the Mw of POM and the loading fractions of PTFE. POM/PTFE composites with lower Mw of POM owned better wear resistance abilities under a high-speed sliding regime, which resulted from the effective lubrication of transferred wear debris under a relatively high sliding speed. However, the transfer layer on the counterface could be easily peeled off under the low sliding speed, resulting in higher wear rate of POM/PTFE composites with lower Mw of POM. POM and its composites with high Mw showed comparative high friction levels, related to the strong adhesion between the resin and the steel counterpart. DSC analysis showed that POM with lower Mw had higher crystallinity, which was beneficial to the improvement of wear resistance in a high-speed sliding condition.


1988 ◽  
Vol 140 ◽  
Author(s):  
D. M. Follstaedt ◽  
J. A. Knapp ◽  
L. E. Pope

AbstractThe changes in friction and wear properties (i.e., tribology) of steels due to thin surface alloys formed by ion beams are surveyed, and considered in light of their microstructures. Amorphous alloys containing both Ti and C are found to give superior performance in comparison to alloys with N, B, C, P or Ti. All the amorphous layers reduce friction, but the duration of benefits and wear resistance at high loads vary with composition. By examining similar amorphous alloys with Ti alone or C alone, the critical roles played by each in resisting wear are demonstrated. Amorphous alloys with Ti and C appear to be quite hard.


Sign in / Sign up

Export Citation Format

Share Document