Coupling Flow-Reaction-Transmission during Square Column Leaching Processes

2013 ◽  
Vol 734-737 ◽  
pp. 698-702
Author(s):  
Jin Zhi Liu ◽  
Yu Hang Li ◽  
Bao Hua Yang

This paper designs a square column leaching experiment to probe the coupling flow-reaction-transmission. 2.372 kg of Yanglas copper ore with a grade of 1.25% was loaded in a 6×6 cm2 column whose height is 60 cm. A 28-day leaching gave an approximate copper yield of 14.5 gram, which is an equivalence of copper leaching rate being 50%. Hydraulic conductivity was measured. The changing trends are analyzed by mathematical analysis software Eviews and Matlab, and the numerical simulation was conducted.

2009 ◽  
Vol 71-73 ◽  
pp. 409-412
Author(s):  
Wen Qing Qin ◽  
Yan Sheng Zhang ◽  
Shi Jie Zhen ◽  
Jun Wang ◽  
Jian Wen Zhang ◽  
...  

The effects of several variables on the column bioleaching of copper sulphide ore have been investigated. The copper ore contained chalcopyrite as the main sulfide minerals and bornite and chalcocite as the minor minerals. The experiment was carried out using bench-scale column leach reactors designed in Key Lab of Biometallurgy of Ministry of Education, which were inoculated with the pure mesophile bacteria (Acidithiobacillus ferrooxidans) and thermophile bacteria (Sulfobacillus), respectively, and the mixed bacteria which contain both iron- and sulfur-oxidizing bacteria. The results show that the mixed cultures were more efficient than the pure cultures alone and the maximum copper recovery 53.64% was achieved using the mixed cultures after 85 days. The leaching rate of chalcopyrite tended to increase with the increased dissolved ferric iron concentration. The effect of particle size on the rate of the copper leaching was also investigated, and it was shown that the copper bioleaching rate decreases as the amount of fines increase, which limits the permeability, thus decreases leaching rate. Jarosite and elemental sulphur formed in the column were characterized by the X-ray and EDS.


2015 ◽  
Vol 1130 ◽  
pp. 355-358
Author(s):  
Tatsuya Shinkawa ◽  
Taro Kamiya ◽  
Kazuhiro Kojima ◽  
Tadashi Chida

Copper ore is classified into three groups; primary copper sulfide, copper oxide and secondary copper sulfide. Leaching copper from primary copper sulfide, such as chalcopyrite, with sulfuric acid takes longer time than from copper oxide and secondary copper sulfide. As such, an oxidant is required to extract copper from chalcopyrite. In this study, column leaching tests were carried out using primary copper sulfide ores produced in an iron oxide copper gold (IOCG) deposit and rich in iron in coparison to porphyry copper ores. The columns of 10 cm diameter and 100 cm long had a double tube structure so that the column temperature can be kept at desired temperature by circulating warm water in the outer tube. The oxidation-reduction potential (ORP) of the leaching solutions were adjustedto 400, 450 and 500 mV vs Ag/AgCl. The column leaching test using just pH 2.0 sulfuric acid without adjustment of ORP at 45 °C got a copper recovery rate of 37 % in 400 days. On the other hand, with ORP adjusted leaching solutions of pH 2.0 sulfuric acid containing 500 mg/L Fe, the copper recovery rate reached up to 87 % in 400 days.In addition, it was necessary to keep the temperature above 45 oC to enhance copper leaching by ORP adjusted leaching solution. The result of the column leaching test at room temperature (around 30 °C) using ORP adjusted leaching solution shows that the recovery rate of copper is lower than the result at 45 °C. The ORP adjustment of leaching solution is effective for leaching copper from primary copper sulfide ore, however, the leaching temperature needs to be kept above 45 °C. As a result, it makes clear that copper leaching is enhanced by utilization of ORP adjusted leaching solutions and suggests that the solution ORP control is important to the application of bioleaching.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


2006 ◽  
Vol 321-323 ◽  
pp. 451-454
Author(s):  
Joo Young Yoo ◽  
Sung Jin Song ◽  
Chang Hwan Kim ◽  
Hee Jun Jung ◽  
Young Hwan Choi ◽  
...  

In the present study, the synthetic signals from the combo tube are simulated by using commercial electromagnetic numerical analysis software which has been developed based on a volume integral method. A comparison of the simulated signals to the experiments is made for the verification of accuracy, and then evaluation of five deliberated single circumferential indication signals is performed to explore a possibility of using a numerical simulation as a practical calibration tool. The good agreement between the evaluation results for two cases (calibration done by experiments and calibration made by simulation) demonstrates such a high possibility.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gai-rong Wang ◽  
Hong-ying Yang ◽  
Yuan-yuan Liu ◽  
Lin-lin Tong ◽  
Ali Auwalu

Abstract The XRF, XRD, polarizing microscopy and SEM-EDS were used to study the alteration mechanism of copper-bearing biotite and the leachable property of copper-bearing minerals in Mulyashy Copper Mine, Zambia. It was found that biotite can be divided into copper-bearing biotite and copper-free biotite. Some copper-bearing biotite existed in the form of monomer, and others aggregated with copper-bearing chlorite, malachite or copper-bearing limonite. The main reason for the occurrence of biotite aggregations was that copper-bearing biotite underwent two kinds of alteration mechanisms as follows: altering into copper-bearing chlorite and malachite, and altering into copper-bearing chlorite and copper-bearing limonite. The order of factors effecting the copper leaching rate of the ores in acid leaching experiments was temperature > sample size > H2SO4 concentration > leaching time > stirring speed. In addition, the copper leaching rate of copper-bearing minerals at different temperatures was in the following order: malachite, chrysocolla and pseudomalachite > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite. The leachable property of biotite is closely related to its special structure.


2013 ◽  
Vol 353-356 ◽  
pp. 941-945
Author(s):  
Wei Yu Wang ◽  
Tuo Zhao

Based on practical engineering, numerical analysis model was established by using finite element analysis software. The rules about raft settlement, pile-top counterforce, soil counterforce were analysed after variable pile diameter. It is more favorable on settlement and counterforce after variable pile diameter than Original design. There is important academic significance and application value on pile raft foundation optimal design.


2011 ◽  
Vol 189-193 ◽  
pp. 2892-2896 ◽  
Author(s):  
Xiao Ting Xiao ◽  
Li Cheng Huang ◽  
Yi Juan Liao ◽  
Li Guang Tan ◽  
Qiao Yu Chen

In this paper, the flow rule of metal during the deep drawing of the non-symmetry workpieces was investigated by means of the numerical simulation of deep-drawing processes of square cup under bilateral constrained conditions. The numerical simulation was carried out by advanced analysis software Dynaform5.5. SUS304 stainless steel was used as the deforming materials. The influence of different friction coefficient and blank holder force on the drawing forming quality was analyzed. The results showed that the material flow in different areas has different trends with increase of friction coefficient and blank holder force.


2013 ◽  
Vol 19 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Asım Künkül ◽  
Abdulvahap Gülezgin ◽  
Nizamettin Demirkiran

The solutions containing ammonia allow for selective leaching of the copper from a copper ore. In this study, the leaching and kinetics of malachite ore were examined using ammonium acetate solutions as an alternative lixiviant. The effects of some experimental parameters on the leaching of malachite ore were investigated. A kinetic model to represent the effects of these parameters on the leaching rate was developed. It was determined that the leaching rate increased with increasing solution concentration, temperature and stirring speed, and decreasing particle size and solid-to-liquid ratio. It was found that the leaching reaction followed the mixed kinetic control model. The activation energy of this leaching process was determined to be 59.6 kJmol-1. Consequently, it was determined that ammonium acetate solutions could be used as an effective leaching agent for the copper extraction form malachite ore.


Sign in / Sign up

Export Citation Format

Share Document