Fabrication of a Microfluidic Device with Insulated Electrodes on Top and Bottom Sides of the Channel

2009 ◽  
Vol 74 ◽  
pp. 183-186
Author(s):  
Lu Jun Zhang ◽  
Andre Bossche

This paper presents a method to fabricate the microfluidic devices with insulated electrodes on top and bottom sides of the channel. To form the channel containing vertically opposing electrodes, two processed substrates were bonded together with an SU-8 intermediate layer sandwiched in between. An adhesive bonding technique, at wafer level, with accurate alignment was developed. Instead of using wafer bonder, the bonding was conducted on a hotplate, which relieves the requirement on the process equipment to a great extent.

2006 ◽  
Vol 34 ◽  
pp. 776-781 ◽  
Author(s):  
Liming Yu ◽  
Francis E H Tay ◽  
Guolin Xu ◽  
Bangtao Chen ◽  
Marioara Avram ◽  
...  

2012 ◽  
Vol 503 ◽  
pp. 55-60 ◽  
Author(s):  
Yu Xin Li ◽  
De Yong Chen ◽  
Jun Bo Wang

This paper presents a method of low temperature wafer level adhesive bonding using non-photosensitive bisbenzocyclobutene (BCB) from Dow Co for resonant pressure sensor package. The bonding process is performed at the temperature below 250oC, with the pressure on the wafer 2-3 Bar in vacuum in a wafer bonding system. According to the bonding process, pre-bake time, pumping time, pressure placed on the sensor and the thickness of cross-linked layer are the most important factors. Experiments show that more than 95% of the area is successfully bonded, the hermeticity maintains well after thermal shock and long term tests, and the tensile strength of the fabricated bonds is up to 40MPa. The bonding technique was successfully tested in the fabrication process of resonant pressure sensor, and the results show that this bonding technique is a viable MEMS encapsulation technology for hermetically cavity sealing.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 387
Author(s):  
Carlos Toshiyuki Matsumi ◽  
Wilson José da Silva ◽  
Fábio Kurt Schneider ◽  
Joaquim Miguel Maia ◽  
Rigoberto E. M. Morales ◽  
...  

Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7493
Author(s):  
Krystian L. Wlodarczyk ◽  
William N. MacPherson ◽  
Duncan P. Hand ◽  
M. Mercedes Maroto-Valer

In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and “know-how” demanding. In this article, we describe an easy-to-implement method developed to integrate various “off-the-shelf” fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors (“pH SensorPlugs” and “FOP-MIV”, respectively), which were “reversibly” attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy’s law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device.


Author(s):  
Ahmed Fadl ◽  
Stefanie Demming ◽  
Zongqin Zhang ◽  
Bjo¨rn Hoxhold ◽  
Stephanus Bu¨ttgenbach ◽  
...  

Developing multifunctional devices are essential to realize more efficient Microsystems. With miniaturization processes taking place in many different applications, the rooms for single function microfluidic devices are limited. In this study, we introduce a multifunctional micro fluidic device based on bifurcation geometry which is capable of performing pumping and mixing at the same time. Optical lithography is used to fabricate the designed microfluidic device. The microfluidic device is tested at low actuator frequencies, and ethanol is employed as a working fluid. The operational principles are based on rectifying the oscillatory flows by using bifurcation structures for flow rectification. The results prove the feasibility of the novel design, and results are presented in terms of flow rates and maximum back pressures.


2016 ◽  
Vol 4 (39) ◽  
pp. 9235-9244 ◽  
Author(s):  
Yanlong Xing ◽  
Norbert Esser ◽  
Petra S. Dittrich

In this work, we studied the formation of fibres and particles made of metal salts and derivatives of tetrathiafulvalene (TTF) on a microfluidic device and in a conventional reaction flask, and characterized their morphologies, optical properties and electrical conductivities.


2006 ◽  
Vol 970 ◽  
Author(s):  
Ronald J. Gutmann ◽  
J. Jay McMahon ◽  
Jian-Qiang Lu

ABSTRACTA monolithic, wafer-level three-dimensional (3D) technology platform is described that is compatible with next-generation wafer level packaging (WLP) processes. The platform combines the advantages of both (1) high bonding strength and adaptability to IC wafer topography variations with spin-on dielectric adhesive bonding and (2) process integration and via-area advantages of metal-metal bonding. A copper-benzocyclobutene (Cu-BCB) process is described that incorporates single-level damascene-patterned Cu vias with partially-cured BCB as the bonding adhesive layer. A demonstration vehicle consisting of a two-wafer stack of 2-4 μm diameter vias has shown the bondability of both Cu-to-Cu and BCB-to-BCB. Planarization conditions to achieve BCB-BCB bonding with low-resistance Cu-Cu contacts have been examined, with wafer-scale planarization requirements compared to other 3D platforms. Concerns about stress induced at the tantalum (Ta) liner-to-BCB interface resulting in partial delamination are discussed. While across-wafer uniformity has not been demonstrated, the viability of this WLP-compatible 3D platform has been shown.


2005 ◽  
Vol 127 (1) ◽  
pp. 7-11 ◽  
Author(s):  
A. Polyakov ◽  
M. Bartek ◽  
J. N. Burghartz

This paper reports on an area-selective adhesive wafer bonding, using photosensitive BCB from Dow Co. The strength of the fabricated bonds is characterized using the wedge-opening and tensile methods. The measured fracture toughness is 53.5±3.9J/m2 with tensile strength up to 71 MPa. The potential application of BCB bonding is demonstrated on a concept of wafer-level chip-scale package for RF applications and microfilter array for microfluidic applications.


Sign in / Sign up

Export Citation Format

Share Document