Effect of Rare Earth Cerium on the Synthesis and Wear-Resistance of Electroless Ni-P-PTFE Coatings

2013 ◽  
Vol 750-752 ◽  
pp. 1996-2002 ◽  
Author(s):  
Da Yong Liu ◽  
Long Gen Li ◽  
Li Sheng Liu

By adding various concentrations of rare earth cerium into the acidic hypophosphite plating baths, electroless Ni-P-PTFE coatings have been successfully deposited on the surface of shaft made of mild steel. Surface morphology, microhardness and interfacial adhesion of the coatings were characterized by scanning electron microscope equipped with energy dispersive spectrometer, vicker microhardness meter and WS-92 scrape instrument, respectively. Ring-plate wear test was applied to study the friction coefficient and wear resistance of Ni-P-PTFE coating. Results revealed that Ni-P-PTFE coatings deposited with 10ppm or 20ppm cerium in the plating baths show low friction coefficient and high interfacial adhesion,leading to its perfect wear resistance. However, both the interfacial adhesion and wear resistance of the Ni-P-PTFE coatings were decreased drastically as the cerium concentration in the plating baths was exceeds 50ppm.

2012 ◽  
Vol 184-185 ◽  
pp. 1380-1383
Author(s):  
Yong Ping Niu ◽  
Xiang Yan Li ◽  
Jun Kai Zhang ◽  
Ming Han ◽  
Yong Zhen Zhang

Polybutyl acrylate (PBA) grafted alumina nanoparticles were synthesized. Polytetrafluoroethylene (PTFE) nanocomposites reinforced with PBA grafted nanoparticles were prepared by compression molding. The effects of PBA grafted nanoparticles on the tribological behavior of the PTFE nanocomposites were investigated on a tribometer. The abrasion mechanisms of the PTFE nanocomposites were investigated by scanning electron microscopy (SEM) of the abraded surfaces. The results show that the addition of PBA grafted nanoparticles maintains low friction coefficient and improves the wear resistance of the PTFE nanocomposites.


2012 ◽  
Vol 501 ◽  
pp. 316-320
Author(s):  
Jian Zhang Guo ◽  
Bin Xu

In order to improve the surface property of the steel tire mold, carbon steels were processed by electroless Ni-P and Ni-P-PTFE under contrast experiment. The coatings were characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). The wear resistance and corrosion resistance of the coatings were explored by tribometer, salt spray cabinet and advanced electrochemical system. The experimental results showed that the Ni-P coating was amorphous structure, and the Ni-P-PTFE coating was micro-pore structure; The wear resistance of Ni-P-PTFE coating was superior to Ni-P coating; In view of the micro-pore structure, the corrosion resistance of Ni-P-PTFE coating was worse than Ni-P coating, but they were all superior to carbon steels, and the service life of the steel tire mold were improved.


Author(s):  
Dongbo Wei ◽  
Fengkun Li ◽  
Xiangfei Wei ◽  
Tomasz Liskiewicz ◽  
Krzysztof J Kubiak ◽  
...  

In this study, surface Cr-Nb alloying was realized on γ-TiAl using double glow plasma hollow cathode discharge technique. An inter-diffusion layer was generated under the surface, composed of Cr2Nb intermetallic compounds. After Cr-Nb alloying, the surface nanohardness of γ-TiAl increased from 5.65 to 11.61 GPa. The surface H/E and H3/E2 increased from 3.37 to 5.98 and from 0.64 to 4.15, respectively. Cr-Nb alloying and its effect on fretting wear were investigated. The surface treatment resulted in improved plastic deformation and fretting wear resistance of γ-TiAl. The fretting wear test showed that an average friction coefficient of γ-TiAl against Si3N4 ball was significantly decreased after Cr-Nb alloying. The fluctuation of friction coefficient during running-in stage was significantly improved. The friction behavior of both γ-TiAl before and after Cr-Nb alloying could be divided into distinctive stages including formation of debris, flaking, formation of crack, and delamination. It was observed that the high hardness, resistance to plastic deformation, and fatigue resistance of γ-TiAl after Cr-Nb alloying could inhibit the formation of debris and delamination during friction test. The fretting wear scar area and the maximum wear scar depth were decreased, indicating that the wear resistance of γ-TiAl has been greatly improved after Cr-Nb alloying. The results indicated that plasma surface Cr-Nb alloying is an effective way for improving the fretting wear resistance of γ-TiAl in aviation area.


2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850009 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN ◽  
J. J. DAI

In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si[Formula: see text] and the matrix of Ti3Al, TiAl, TiAl3 and [Formula: see text]-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV[Formula: see text] to 1130 HV[Formula: see text], which was approximately 3–4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023[Formula: see text]cm3[Formula: see text][Formula: see text][Formula: see text]min[Formula: see text], which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.


2012 ◽  
Vol 501 ◽  
pp. 185-189
Author(s):  
Jian Zhang Guo ◽  
Qian Liu

In order to improve the corrosion resistance and the hardness of the 45 steel, under comparison tests, the electroless Ni-B was prepared on the 45 steel. We made a contrast test to get the optimal formula. The coating under the optimal formula was characterized by Scanning Electron Microscopy(SEM), Energy Dispersive Spectrometer(EDS), metallurgical microscope and salt spray cabinet. The experimental results showed that the electroless Ni-B coating on 45 steel was low boron coating, with high hardness, and the hardness of the coating could catch HV524; the thickness of the coating was 16μm.


2010 ◽  
Vol 33 ◽  
pp. 483-486
Author(s):  
Hai Dong Yang ◽  
Xi Quan Xia ◽  
Zhen Hua Qing

The method of “cutting instead of grinding” on hardened steel is always attractive to engineers. To gain this aim the tool material must first be found. C3N4 is a new kind of super hard material and has comparable properties with diamond in high hardness, wear-resistance, low friction coefficient and thermal conductivity. A number of dry-cutting tests were carried out by C3N4-film coated tool on hardened steel, proved the coating tool is suitable for hard dry cutting.


2017 ◽  
Vol 24 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Hongxia Zhang ◽  
Huijun Yu ◽  
Chuanzhong Chen

AbstractThe composite coatings were fabricated by laser cladding Ni60A/B4C pre-placed powders on the surface of Ti-6Al-4V alloy for improving wear resistance and hardness of the substrate. In this research, the composite coatings were studied by means of X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The sliding wear tests were performed using MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the laser cladding coating and Ti-6Al-4V substrate. The composite coatings were mainly composed of the matrix of γ-Ni and a little Ni3Ti and the reinforcements of TiB2, TiC and CrB. The hardness of the sample of Ni60A-5B4C was approximately 2.5–3.5 times that of the Ti-6Al-4V substrate. The hardness of the sample of Ni60A-10B4C was 30% higher than that of sample 1. The wear resistance of samples 1 and 2 were 11 times and 10 times that of the substrate, respectively.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550044 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN

The composite coatings were fabricated by laser cladding Al / TiN pre-placed powders on Ti –6 Al –4 V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β- Ti  ( Al ) and the reinforcements of titanium nitride ( TiN ), Ti 3 Al , TiAl and Al 3 Ti . The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti –6 Al –4 V substrate. And the wear resistance of sample 4 was four times of the substrate.


2016 ◽  
Vol 721 ◽  
pp. 351-355 ◽  
Author(s):  
Taavi Simson ◽  
Priit Kulu ◽  
Andrei Surženkov ◽  
Dmitri Goljandin ◽  
Riho Tarbe ◽  
...  

This paper focuses on the influence of hardmetal reinforcement amount, shape and size on the abrasive wear resistance of composite iron self-fluxing alloy (FeCrSiB) based hardfacings produced by the powder metallurgy (PM) technology. First, the size of the reinforcement (1 – 2.5 mm) was fixed, but its shape (angular or spherical) and amount (0 – 50 vol%) were varied. Then the reinforcement shape (angular) and amount (50 vol%) were kept constant, while its size (0.16 – 0.315 mm fine reinforcement and 1 – 2.5 mm coarse reinforcement) and proportion of fine and coarse reinforcement (all fine, all coarse, half fine-half coarse) were varied. ASTM G65 abrasive rubber wheel wear test was applied to find out the wear resistance of the hardfacings; an unreinforced self-luxing alloy (FeCrSiB) hardfacing was the reference material. Volumetric wear rate was calculated according to the weight loss. Worn surfaces were studied under scanning electron microscope. As a result, an optimal composition of the hardmetal containing Fe-based hardfacings based on the reinforcement amount (vol%), shape (irregular or spherical) and size (fine or coarse) is given.


2019 ◽  
Vol 293 ◽  
pp. 125-140
Author(s):  
Agnieszka Paradecka ◽  
Krzysztof Lukaszkowicz ◽  
Jozef Sondor

Low friction thin layers are an excellent alternative for conventional coatings. They provide increased life of the elements, to which they were applied, due to enhancing the hardness or chemical and electrochemical resistance. They help to avoid the cracks, oxidation, as well as possible structural changes during the element's work. However, they primarily improve tribological properties by increasing wear resistance and reducing the friction. This also applies to components operating under variable conditions such as load, speed, temperature. The presented article analyzes the properties of various low-friction thin layers deposited by vacuum methods on the steel substrates. DLC, TiC, MoS2, CrCN thin layers were chosen, as they achieve the lowest possible coefficient of friction. In the framework of this work the measurements of adhesion of the investigated layers to the substrate as well as the friction coefficient, chemical analysis, microstructure and topographic analysis of the low-friction layers were carried out.


Sign in / Sign up

Export Citation Format

Share Document