Multiple Transfer Used on Repairing Transparent and Electric Film Based on CVD - Grown Graphene

2013 ◽  
Vol 774-776 ◽  
pp. 634-639
Author(s):  
Peng Fei Zhao ◽  
Da Wei He ◽  
Yong Sheng Wang ◽  
Ming Fu ◽  
Hong Peng Wu ◽  
...  

We optimized the CH4 and H2 gas flow rate of chemical vapor deposition (CVD) graphene growth and obtained larger area, fewer-layered graphene grown on Cu foils. After transfering to SiO2 substrate by PMMA more than 3 times to repair the defect of monolayer graphene film, we synthesized large area, transparent and continuous graphene film. The morphology and structure were characterized by SEM and Raman spectroscopy. Analysis of electrical properties and optical properties show that we obtained low resistance and high transparency of ~90%, which could be used on photoelectric device as solar cell and acceptable for replacing commercial ITO electrodes.

2015 ◽  
Vol 815 ◽  
pp. 18-21
Author(s):  
Tao Huang ◽  
Lin Chen ◽  
Qing Qing Sun ◽  
Peng Zhou ◽  
David Wei Zhang

Graphene is a novel two dimensional material with exceptional properties. Chemical vapor deposition of graphene on metal substrates is widely used to prepare high quality graphene film. However, the graphene films need to be transferred to oxide substrates for device applications. A chemical vapor deposition approach for direct growth of graphene films on zinc oxide was demonstrated in the present investigation. Raman spectra were used to characterize the grown graphene films. The impact of the growth temperature, time and gas flow ratio on the layer number and crystallite size of graphene was investigated.


2012 ◽  
Vol 508 ◽  
pp. 3-6 ◽  
Author(s):  
Kadokura Hokuto ◽  
Akihiko Ito ◽  
Teiichi Kimura ◽  
Takashi Goto

Α-Al2O3 Films Were Prepared by Laser Chemical Vapor Deposition and the Effects of Precursor Evaporation Temperature (Tvap) and Oxygen Gas Flow Rate (FRo) on Phase and Orientation of Al2o3 Films Were Investigated. at Tvap = 413 K, (100)-Oriented α-Al2O3 and θ-Al2O3 Were Codeposited. the Amount of θ-Al2O3 Increased with Increasing FRo. at Tvap = 433–443 K, α-Al2O3 Films Showed a (001) Orientation. (100)- and (001)-Oriented α-Al2O3 Films Had a Rectangular- and Hexagonal-Shaped Grains, Respectively, and Showed a Columnar in Cross Section. Grain Size of (100)- and (001)-Oriented α-Al2O3 Films Decreased from 10 to 2 μm with Increasing FRo from 0.085 to 0.85 Pa m3 s−1. Deposition Rate Increased from 100 to 300 μm h−1 with Increasing Tvap from 413 to 443 K.


MRS Advances ◽  
2016 ◽  
Vol 2 (29) ◽  
pp. 1533-1538 ◽  
Author(s):  
S. Ishihara ◽  
Y. Hibino ◽  
N. Sawamoto ◽  
T. Ohashi ◽  
K. Matsuura ◽  
...  

ABSTRACTMolybdenum disulfide (MoS2) thin films were fabricated by two-step chemical vapor deposition (CVD) using (t-C4H9)2S2 and the effects of temperature, gas flow rate, and atmosphere on the formation were investigated in order to achieve high-speed low-temperature MoS2 film formation. From the results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) investigations, it was confirmed that c-axis orientation of the pre-deposited Mo film has a significant involvement in the crystal orientation after the reaction low temperature sulfurization annealing and we successfully obtained 3 nm c-axis oriented MoS2 thin film. From the S/Mo ratios in the films, it was revealed that the sulfurization reaction proceeds faster with increase in the sulfurization temperature and the gas flow rate. Moreover, the sulfurization under the H2 atmosphere promotes decomposition reaction of (t-C4H9)2S2, which were confirmed by XPS and density functional theory (DFT) simulation.


Nano Letters ◽  
2014 ◽  
Vol 14 (7) ◽  
pp. 3702-3708 ◽  
Author(s):  
Nan Liu ◽  
He Tian ◽  
Gregor Schwartz ◽  
Jeffrey B.-H. Tok ◽  
Tian-Ling Ren ◽  
...  

MRS Bulletin ◽  
1995 ◽  
Vol 20 (1) ◽  
pp. 45-47 ◽  
Author(s):  
Toshio Hirai

Various methods are used in functionally gradient materials technology to control the composition and structure of a composite.The chemical vapor deposition (CVD) method yields a deposit with source gases by applying variou s forms of energy (heat, light, plasma, etc.) to the gases after they are introduced into a CVD reactor. Hydride, bromide, and chloride are generally used for source materials. By continually changing the mixture ratio of source gases or by controlling the CVD conditions such as deposition temperatures, gas pressure, and gas-flow rate, CVD permits relatively easy syntheses of various FGMs (to a maximum thickness on the order of a centimeter).


Sign in / Sign up

Export Citation Format

Share Document