Influence Nitriding in the Electrolytic Plasma on the Tribological Properties of Low-Alloy 40Cr Steel

2013 ◽  
Vol 785-786 ◽  
pp. 848-851
Author(s):  
Mazhyn Skakov ◽  
Yerzhan Sapatayev ◽  
Michael Scheffler

This paper presents the results of research influence nitriding in electrolytic plasma on the tribological properties of low-alloy 40Cr steel. It is shown that the process of electrolytic plasma nitriding can significantly increase the wear resistance of the samples 40Cr steel. Found that after nitriding component adhesive wear mechanism is changed to abrasion.

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Qiang Wang ◽  
Runling Qian ◽  
Ju Yang ◽  
Wenjuan Niu ◽  
Liucheng Zhou ◽  
...  

In order to improve the wear resistance of 27SiMn steel substrate, Fe−based alloy coatings were prepared by laser cladding technology in the present study. In comparison to the conventional gravity powder feeding (GF) process, high−speed powder feeding (HF) process was used to prepare Fe−based alloy coating on 27SiMn steel substrate. The effect of diversified energy composition of powder materials on the microstructure and properties of coatings were systematically studied. X−ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the phase structure and microstructure of Fe−based alloy coatings, and the hardness and tribological properties were measured by the microhardness tester and ball on disc wear tester, respectively. The results show that the microstructure of conventional gravity feeding (GF) coatings was composed of coarse columnar crystals. In comparison, owing to the diversification of energy composition, the microstructure of the high−speed powder feeding (HF) coatings consists of uniform and small grains. The total energy of the HF process was 75.5% of that of the GF process, proving that high−efficiency cladding can be achieved at lower laser energy. The refinement of the microstructure is beneficial to improve the hardness and wear resistance of the coating, and the hardness of the HF coating increased by 9.4% and the wear loss decreased to 80.5%, compared with the GF coating. The wear surface of the HF coating suffered less damage, and the wear mechanism was slightly adhesive wear. In contrast, wear was more serious in the GF coating, and the wear mechanism was transformed into severe adhesive wear.


2011 ◽  
Vol 110-116 ◽  
pp. 600-605 ◽  
Author(s):  
A. Devaraju ◽  
A. Elayaperumal ◽  
S. Venugopal ◽  
Satish V. Kailas ◽  
J. Alphonsa

The tribological properties of Plasma Nitrided (PN) rings were examined in high vacuum environment (1.6 x 10-4bar) at 25°C, 200°C and 400°C. The high vacuum based pin on disc tribometer was used for this investigation. The two different sliders namely austenitic stainless steel type AISI 316LN (316LN) pin and Nickel based alloy coated (Colmonoy) pin have been used. The tribological parameters such as friction coefficient, wear mechanism and wear rate have been evaluated. The PN 316LN rings exhibits excellent wear resistance against 316 LN pin and Colmonoy pin at all temperatures. However, the PN 316LN ring vs Colmonoy pin pair shows better wear resistance than PN 316LN ring vs 316 LN pin pair. Whereas the untreated 316 LN ring vs 316 LN pin pair exhibits the combination strong adhesion and plastic deformation wear mechanism.


2015 ◽  
Vol 1095 ◽  
pp. 135-139
Author(s):  
Wei Xi Shi ◽  
Cheng Wu Du ◽  
Gui Mao Li ◽  
Zhi Ming Liu

The morphology of eutectic and primary silicon phases was analyzed by OM and SEM. OM and SEM results show that pure Nd can significantly refine both eutectic and primary silicon of hypereutectic Al-20%Si alloy. Morphology of primary silicon is transformed from star-shaped and irregular morphology to fine polyhedral and grain size of primary silicon is refined from 80~120 μm to 20~50 μm. Friction and wear resistance tests show that friction coefficient of Al-20%Si alloy reduces after Nd modification. Wear resistance of Al-20%Si alloy after modification is significantly improved as compared to the initial sample. The dominant wear mechanism for 0.3% Nd modified alloy is abrasive wear, adhesive wear and oxidative wear mechanism, but wear mechanism for unmodified alloy is abrasive wear and adhesive wear mechanism.


2021 ◽  
Vol 27 (1) ◽  
pp. 42-49
Author(s):  
Zhengang YANG ◽  
Wenping LIANG ◽  
Yanlin JIA ◽  
Qiang MIAO ◽  
Zheng DING ◽  
...  

A borocarburized layer was successfully fabricated on the surface of Q235 low-carbon steel via double glow treatment to improve the wear resistance at elevated temperature. The phase composition and microstructure of borocarburized layer were investigated by XRD and SEM. The microhardness of borocarburized layer from the surface to the substrate were detected. And the tribological behaviors of borocarburized layer and substrate were investigated under the dry-sliding against ZrO2 ball at three temperatures. The results indicate that the borocarburized layer consists of an outermost boride layer and a transition layer of carburized layer. The boride layer with main phase of Fe2B has a high hardness around 1700 HV, and the hardness of transition layer with main phase of Fe5C3 is around 600 HV. The novel gradient structure of an outermost boride layer and inner carburized layer is design in this research decreases the hardness mismatch of coating to prevent the boride layer peeling off. The friction coefficient and specific wear rate of borocarburized layer are much lower than that of substrate at the same temperature. In addition, the wear mechanism of substrate is mainly fatigue wear and slightly adhesive wear at 20℃. When the wear test performs at 200℃, the substrate wear mechanism is adhesive wear and fatigue wear. The wear mechanism of borocarburized layer is main abrasive wear at 20℃ and 200℃. And the wear mechanism of both substrate and borocarburized layer are main oxidation wear and adhesive wear at 500℃. The borocarburized layer effectively improves the wear resistance of low carbon steel due to the higher hardness and great thermal stability at high temperature.


2021 ◽  
Vol 57 (1) ◽  
pp. 97-104
Author(s):  
D.-B. Wei ◽  
X. Zhou ◽  
F.-K. Li ◽  
M.-F. Li ◽  
S.-Q. Li ◽  
...  

To improve the wear resistance of ?-TiAl alloy, Ta alloy layer was prepared on surface by double glow plasma surface alloying technique. The tribology behavior of Ta alloy layer against Si3N4 at 25?, 350? and 500? were comparatively studied. The results showed that Ta alloy layer comprised a deposition layer and a diffusion layer. The deposition layer played a role in protection as a soft film. With the increase of temperature, the wear mechanism of ?-TiAl changed from abrasive wear to coexistence of abrasive wear and oxidation wear. Ta alloy layer?s wear mechanism changed from adhesive wear to coexistence of adhesive wear and oxidation wear. Surface Ta alloying process significantly reduced the wear volume, the specific wear rate and the friction coefficient of ?-TiAl and improved the wear resistance properties of ?-TiAl.


2020 ◽  
Vol 10 (20) ◽  
pp. 7363
Author(s):  
Lei Xu ◽  
Erkuo Yang ◽  
Yasong Wang ◽  
Changyun Li ◽  
Zhiru Chen ◽  
...  

Ultra high-pressure sintering (UHPS) was used to prepare AA6061/SiCp composites with different contents and the effect of sintering temperatures on microstructure and mechanical properties was investigated in this study. The results showed that a uniform distribution of nano-SiC particles (N-SiCp) is obtained by the UHPS method. With the increase in N-SiCp contents, the higher hardness and better wear resistance could be inspected. The interfacial reactions and Al4C3 phase appeared above 550 °C. The relative density of composites first increased and then decreased; with the temperature raising it reached 99.58% at 600 °C. The hardness and wear property showed the same trend with the hardness reaching 52 HRA and wear rate being 1.0 × 10−6 g/m at 600 °C. Besides, the wear mechanism of the composites is mainly composed of abrasive wear and adhesive wear.


2015 ◽  
Vol 817 ◽  
pp. 571-576
Author(s):  
Jun Tao Zou ◽  
Chan Wang ◽  
Yang Li ◽  
Xian Hui Wang ◽  
Shu Hua Liang

The effect of ambient temperature, materials state and lubrication condition on wear resistance of Cu10Al5Fe5Ni alloy was investigated. The wear surface morphology was characterized by a scanning electron microscope (SEM), and the wear mechanism was discussed as well. The results show that the friction coefficient of Cu10Al5Fe5Ni alloy increases and then decreases with increasing temperature. The wear rate of the Cu10Al5Fe5Ni alloy after solid solution and ageing treatment is less than that of the as-cast alloy, and the wear rate of Cu10Al5Fe5Ni alloy reduces dramatically from 5.31×10-5 mm3 / (m· N) into 1.80×10-6 mm3 / (m·N) after adding lubricating oil. At elevated temperature, the prior wear mechanism is the fatigue wear, accompanying by slight abrasive wear and adhesive wear for the aged Cu10Al5Fe5Ni alloy.


2009 ◽  
Vol 628-629 ◽  
pp. 697-702 ◽  
Author(s):  
Sheng Lei ◽  
Quan Kun Liu ◽  
Yu Ping Liu ◽  
Heng Li

Microstructure, microhardness and tribological properties of laser hardened GCr15 steel were investigated in this paper. The wear resistance under lubricated sliding conditions was compared between specimens treated with laser and those of conventionally hardened. The tribological properties of laser surface-quenched GCr15 steel specimens were slightly better due to the effects of the microstructure hardening, high hardness and toughness, with the wear rate (in the order of 10-6mg/Nm) lower than that of the conventionally treated specimens. At the steady state, the frictional coefficient of laser-treated samples had no obvious difference from that of the conventionally treated samples. The wear mechanism for both cases was similar, generally involved surface fatigue wear and slight abrasion wear. LeiQ.K. Liu S. Lei Introduction H. Li In recent years, among the various surface modification methods, laser-induced surface modification has gained much attention for achieving the desired properties for applications[1]. This method is mainly used for ferrous alloys which undergo martensitic transformation and thus form a very hard surface layer with negligible surface roughness and distortion[2]. Some ideas demonstrated that the wear rate at a particular contact pressure can be strongly influenced by the microstructure of the steel, but there is also contrary idea that under the conditions of mild wear, the microstructural constituents of steels have no significant influence on the wear rate, although they affect the rate of severe wear. Previous studies of the authors demonstrated that under the dry sliding wear conditions, laser surface-hardened specimens of ferrous alloys exhibited enhanced wear resistance than conventionally hardened specimens. The aim of the study is to investigate the lubricated sliding wear behaviors of laser surface hardened GCr15 steel specimens and to compare the effect of the different microstructure compositions for laser transformation hardening with those of conventionally hardened and quenched. Moreover, the wear properties of the GCr15 steel and its corresponding wear mechanism under the lubricated wear conditions will also be studied.


2020 ◽  
Vol 30 (5-6) ◽  
pp. 195-202
Author(s):  
Vincent C. Ezechukwu ◽  
Chukwuemeka C. Nwobi-Okoye ◽  
Philip N. Atanmo ◽  
Victor S. Aigbodion

The numerical approach for the study of wear performance of breadfruit seed shell ash particles (BFSAp) and Sodium hydroxide (OH)/silane (APS)functionalized Momordica angustisepala fiber (MAf)/epoxy hybrid composites were investigated. The MAf fibers were treated with an OH-APS solution. Hardness values, wear rate and wear mechanism of the samples were determined. A 65.82% improvement in wear resistance was obtained at the load of 30N of 30wt%MAf-20wt%BFSAp composite. The wear rate and wear damage followed in this order: epoxy(matrix)˂epoxy/30wt%MAf-20wt%BFSAp˂epoxy/OH-APS treated 30wt%MAf-20wt%BFSAp composites. The wear mechanism observed in this work is a combination of abrasive and adhesive wear. High wear resistance was obtained in epoxy/OH-APS treated 30wt%MAf-20wt%BFSAp composites.


2013 ◽  
Vol 423-426 ◽  
pp. 939-943 ◽  
Author(s):  
Qi Feng Jing ◽  
Ye Fa Tan ◽  
Hui Yong Ji ◽  
Xiao Long Wang ◽  
Li Gao ◽  
...  

Setellite21 cobalt-based alloy coating was deposited on 45 steel by electro-spark deposition. Microstructure and phase composition of the coating were analyzed. Wear resistance and wear mechanism of the coating were researched. The results indicate that the coating with compact structure is mainly composed of Co, Co6W6C, CoCx and CoCr. Average microhardness of the coating is 445.34 HV0.5, which is about 2 times to that of the substrate. The coating presents excellent wear resistance with no obvious peelings and scratches. Wear resistance of the coating is about 2.3~2.7 times to that of the substrate. Wear mechanism of the coating mainly contains abrasive wear and fatigue wear, and along with oxidization wear.


Sign in / Sign up

Export Citation Format

Share Document