scholarly journals Effects of plasma surface Ta alloying on the tribology behavior of γ-TiAl

2021 ◽  
Vol 57 (1) ◽  
pp. 97-104
Author(s):  
D.-B. Wei ◽  
X. Zhou ◽  
F.-K. Li ◽  
M.-F. Li ◽  
S.-Q. Li ◽  
...  

To improve the wear resistance of ?-TiAl alloy, Ta alloy layer was prepared on surface by double glow plasma surface alloying technique. The tribology behavior of Ta alloy layer against Si3N4 at 25?, 350? and 500? were comparatively studied. The results showed that Ta alloy layer comprised a deposition layer and a diffusion layer. The deposition layer played a role in protection as a soft film. With the increase of temperature, the wear mechanism of ?-TiAl changed from abrasive wear to coexistence of abrasive wear and oxidation wear. Ta alloy layer?s wear mechanism changed from adhesive wear to coexistence of adhesive wear and oxidation wear. Surface Ta alloying process significantly reduced the wear volume, the specific wear rate and the friction coefficient of ?-TiAl and improved the wear resistance properties of ?-TiAl.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4009
Author(s):  
Yingchao Pei ◽  
Dianxiu Xia ◽  
Shouren Wang ◽  
Liang Cong ◽  
Xuelin Wang ◽  
...  

An investigation on the tribological properties of GCr15 sliding against NM600 was carried out using a high-temperature friction and wear tester. As the temperature rose from room temperature to 300 °C, the average friction coefficient of NM600 increased rapidly, then decreased rapidly, and then became stable. The wear volume and specific wear rate of NM600 increased rapidly, then decreased rapidly, and then increased slowly. The wear mechanism and matrix properties of the tested steel at different temperatures are the main reasons for the above results. At 20–50 °C, the main wear mechanism was adhesive wear, fatigue wear, and abrasive wear. At 100–150 ℃, the wear mechanism was mainly adhesive wear, fatigue wear, abrasive wear, and oxidation wear. At 200–300 °C, the wear mechanism was mainly oxidation wear and abrasive wear.


2015 ◽  
Vol 1095 ◽  
pp. 135-139
Author(s):  
Wei Xi Shi ◽  
Cheng Wu Du ◽  
Gui Mao Li ◽  
Zhi Ming Liu

The morphology of eutectic and primary silicon phases was analyzed by OM and SEM. OM and SEM results show that pure Nd can significantly refine both eutectic and primary silicon of hypereutectic Al-20%Si alloy. Morphology of primary silicon is transformed from star-shaped and irregular morphology to fine polyhedral and grain size of primary silicon is refined from 80~120 μm to 20~50 μm. Friction and wear resistance tests show that friction coefficient of Al-20%Si alloy reduces after Nd modification. Wear resistance of Al-20%Si alloy after modification is significantly improved as compared to the initial sample. The dominant wear mechanism for 0.3% Nd modified alloy is abrasive wear, adhesive wear and oxidative wear mechanism, but wear mechanism for unmodified alloy is abrasive wear and adhesive wear mechanism.


2000 ◽  
Vol 131 (1-3) ◽  
pp. 378-382 ◽  
Author(s):  
Xu Zhang ◽  
Xishan Xie ◽  
Zhongmin Yang ◽  
Jianxin Dong ◽  
Zhong Xu ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7363
Author(s):  
Lei Xu ◽  
Erkuo Yang ◽  
Yasong Wang ◽  
Changyun Li ◽  
Zhiru Chen ◽  
...  

Ultra high-pressure sintering (UHPS) was used to prepare AA6061/SiCp composites with different contents and the effect of sintering temperatures on microstructure and mechanical properties was investigated in this study. The results showed that a uniform distribution of nano-SiC particles (N-SiCp) is obtained by the UHPS method. With the increase in N-SiCp contents, the higher hardness and better wear resistance could be inspected. The interfacial reactions and Al4C3 phase appeared above 550 °C. The relative density of composites first increased and then decreased; with the temperature raising it reached 99.58% at 600 °C. The hardness and wear property showed the same trend with the hardness reaching 52 HRA and wear rate being 1.0 × 10−6 g/m at 600 °C. Besides, the wear mechanism of the composites is mainly composed of abrasive wear and adhesive wear.


2011 ◽  
Vol 189-193 ◽  
pp. 1091-1095
Author(s):  
Zhi Yong He ◽  
Zhen Xia Wang ◽  
Ying Qin Wang ◽  
Xiao Ping Liu ◽  
Zhong Xu

TiAl-Cr alloy was prepared on surface of TiAl based alloy by plasma surface alloying technique. The wear resistance of the surface alloy was examined under various wear condition. During the room temperature ball-on-dic sliding test, the TiAl-Cr surface alloy showed reduced friction and improved wear resistance. For the 500°C sliding and room temperature fretting tests, the friction coefficient of TiAl-Cr surface alloy was a little higher than that of TiAl-based alloy, but the wear volume showed significant reducing, the wear resistance was improved obviously. The addition of chromium increases the strength and hardness of the TiAl-based alloy, and therefore the load bearing and anti-adhesion capacity of the surface were also enhanced, these were the main mechanisms for the improvement of wear resistance.


2017 ◽  
Vol 898 ◽  
pp. 879-889
Author(s):  
Chen Yang Shu ◽  
Hai Yan Chen ◽  
Xuan Zhao ◽  
Yu Long Qi ◽  
Li Hua Dong ◽  
...  

Microstructure and tribological characteristics of WC/Ni-based plasma transferred arc welding (PTAW) overlays have been investigated. WC/Ni-based composite overlays were deposited under same conditions with different percent of WC particle (20-70 wt.%) in the 304L stainless steel. Reciprocating wear tests were undertaken according to the ASTM G133-05 standard. Microstructure and surface micrographs of the cross-section and worn surfaces were characterized. The results indicated that the wear rate decreased with the increasing percent of WC particle, revealing no visible decrease in wear when the percent of WC particle reached more than 50 wt.%. Coating with 50 wt.% WC particle possessed a fine abrasion resistance due to a homogeneous microstructure. Furthermore, at a low concentration (20 wt.% to 40 wt.%), the wear mechanism were adhesive wear and oxidation wear, whereas in 50wt.% WC particle, the main wear mechanism were adhesive wear and abrasive wear. In the case of high concentration of WC particle (above 50 wt.%), the predominant wear mechanism was three-body abrasive wear.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 735
Author(s):  
Songchen Wang ◽  
Xianchen Yang ◽  
Xinmei Li ◽  
Cheng Chai ◽  
Gen Wang ◽  
...  

The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Qiang Wang ◽  
Runling Qian ◽  
Ju Yang ◽  
Wenjuan Niu ◽  
Liucheng Zhou ◽  
...  

In order to improve the wear resistance of 27SiMn steel substrate, Fe−based alloy coatings were prepared by laser cladding technology in the present study. In comparison to the conventional gravity powder feeding (GF) process, high−speed powder feeding (HF) process was used to prepare Fe−based alloy coating on 27SiMn steel substrate. The effect of diversified energy composition of powder materials on the microstructure and properties of coatings were systematically studied. X−ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the phase structure and microstructure of Fe−based alloy coatings, and the hardness and tribological properties were measured by the microhardness tester and ball on disc wear tester, respectively. The results show that the microstructure of conventional gravity feeding (GF) coatings was composed of coarse columnar crystals. In comparison, owing to the diversification of energy composition, the microstructure of the high−speed powder feeding (HF) coatings consists of uniform and small grains. The total energy of the HF process was 75.5% of that of the GF process, proving that high−efficiency cladding can be achieved at lower laser energy. The refinement of the microstructure is beneficial to improve the hardness and wear resistance of the coating, and the hardness of the HF coating increased by 9.4% and the wear loss decreased to 80.5%, compared with the GF coating. The wear surface of the HF coating suffered less damage, and the wear mechanism was slightly adhesive wear. In contrast, wear was more serious in the GF coating, and the wear mechanism was transformed into severe adhesive wear.


2021 ◽  
Author(s):  
Safiye İpek Ayvaz ◽  
Mehmet Ayvaz

In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.


2020 ◽  
Vol 993 ◽  
pp. 836-843
Author(s):  
Ke Guo ◽  
Zhi Qiang Zhang ◽  
Zhong Zheng Pei ◽  
Jie Xu ◽  
Yi Fan Feng

Here we developed a hot-pressed molded resin-based brake pad material reinforced by a nano sodium titanate whisker in comparison with nano potassium titanate whisker. The effect of the whiskers on the tribology behavior was investigated. Though nano sodium titanate whisker reinforced brake material showed higher porosity (+12.29% averagely) and lower hardness (-25.8% averagely) caused by the impurities, it exhibited improved ability in stabilizing the friction coefficient and enhancing 25.5%, 31.1%, 25.9% higher wear resistance, when the volume contents of whisker are 7.5%, 15% and 22.5%, respectively, compared to the nano potassium titanate whisker reinforced brake material. The wear mechanisms of the nano sodium titanate whisker reinforced brake materials were determined as embedded debris, delaminated crater, moderate layers transfer, uniform furrows, primary plateaus and secondary plateaus in similar size, indicating a main wear form of abrasive wear instead of adhesive wear.


Sign in / Sign up

Export Citation Format

Share Document