Cross-Linking Soybean Protein into Periodate Oxidized Cotton Fabrics and their Physical Properties

2013 ◽  
Vol 796 ◽  
pp. 385-389 ◽  
Author(s):  
Chen Huang ◽  
Yun Hui Xu ◽  
Jia Lin Chen

The possibilities of obtaining active soybeancotton fabrics were examined. An effective two-stage method was developed. The first stage involves the formation of dialdehyde cellulose by the sodium periodate oxidation of cotton fabrics, which is able to form Schiff base with soybean protein. In the second stage, soybean grafted cotton fabrics were prepared by subsequent treatment of oxidized cotton fabrics with a solution of soybean protein in aqueous acetic acid. The technical conditions of oxidized cotton fabrics with soybean protein graft were studied, the internal structure and wearability of oxidized cotton fabric after soybean protein treatment were respectively measured and analyzed in this paper. The results of infrared spectra indicated that the C=N of chemical bond was formed between the aldehyde groups in oxidized cotton fabrics and the amino groups of soybean protein, and the soybean protein cross-linked on the surface of oxidized cotton fabrics by a series of reactions. Meanwhile, the calculating results on the separating peaks and imitating curves of X-ray diffractive curves illuminated that the crystallinity of the oxidized cotton fabric after soybean protein modification decreased from 67.83% to 62.35%. After soybean protein treatment, the breaking strength and elongation of the fabrics slightly decreased, whereas the wrinkle recovery angle and moisture absorption of cotton fabrics remarkably increased.

2011 ◽  
Vol 287-290 ◽  
pp. 2579-2582
Author(s):  
Yun Hui Xu ◽  
Xiao Li Zhang

In order to take advantage of specific properties of sericin to develop cotton fabrics with the healthcare function, the cotton fabric modified with sericin (SMCF) was prepared by the periodate oxidation and subsequent treatment with sericin solution. The aldehyde groups in molecular chains of the oxidized cotton fabric crosslinked with the amino groups of sericin to form the chemical bond of Schiff’s base. The effects of periodate concentration, reaction temperature, sericin concentration and treatment time on the finishing process were investigated. The optimum finishing technology for cotton fabric was obtained. XPS analysis of the modified cotton fabric showed a characteristic peak of nitrogen element at 400.0–404.0 eV, which suggested that the sericin was fixed on the surface of cotton fabric through the Schiff’s base. The anti-ultraviolet property of the resulting SMCF improved. The breaking strength and whiteness of the modified fabric slightly decreased, whereas the moisture regain and wrinkle recovery angle of sericin treated fabric remarkably increased.


2011 ◽  
Vol 236-238 ◽  
pp. 1415-1419 ◽  
Author(s):  
Yun Hui Xu ◽  
Zhao Fang Du

In order to develop cotton fabric underwear with the health care function, the cotton fiber was modified with the collagen (CMCF) using periodate oxidation method. The aldehyde groups on the glucose chains of the oxidized cotton cellulose were reacted with the amino groups of collagen to obtain the CMCF, and the oxidized cellulose was crosslinked with collagen in aqueous acetic acid media. The effects of collagen concentration, treatment time, reaction temperature, pH value of solution and periodate concentration on the amount of collagen crosslinked on cotton fiber were respectively discussed, and the optimal reaction technology was obtained. XPS characterization of the modified cotton fiber showed a characteristic peak about 400.0–405.0 eV corresponding to collagen, which indicated that the collagen was combined on the surface of cotton fiber. The mechanical properties of the collagen modified cotton fiber were improved. The resulting CMCF is a new natural ecological fiber and has the extensive application as a carrier for the controlled release of drugs.


2011 ◽  
Vol 332-334 ◽  
pp. 908-911
Author(s):  
Xiao Li Zhang ◽  
Yun Hui Xu

Moisture permeability is an important property of cotton fabrics. Fully understanding of cotton fabric moisture absorption and moisture permeability plays an important role in the further study of the cotton fabric property and development of new cotton fabric. According to 6 kinds of cotton fabrics, the moisture permeability was measured by wet cup moisture absorption method under normal temperature. Such structural parameters have been analyzed as the yarn density, warp and weft density, weight per square meters, thickness, twist, which influenced the moisture permeability of fabrics. By the grey relational analysis, the grey relational sequence of structural parameters have been concluded which affect the moisture permeability of fabrics: thickness>weight per square meters>weft density>weft twist>warp density>wefts yarn density>warp twist>warp yarn density. The results provide theoretical basis for research and designing of textile products and modification of fabrics.


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2011 ◽  
Vol 331 ◽  
pp. 261-264 ◽  
Author(s):  
Qi Ming Zhao ◽  
Shan Yan Zhang

The auxiliary devices of ultrasonic treatment was designed and manufactured. The cotton fabric was desized using 2000L desizing enzyme with the conventional enzyme desizing process and ultrasonic enzyme desizing process respectively. Through the orthogonal experiment, the optimum process conditions of conventional enzyme desizing process and ultrasonic enzyme desizing process were determined. For the conventional enzyme desizing process, the optimized desizing conditions of cotton fabrics were: desizing enzyme dosage was 1.5g/l, temperature was 80°C, PH value was 6, and time was 60mins. The optimum process conditions of ultrasonic enzyme desizing process were: desizing enzyme dosage was 1.5g/l, temperature was 50°C, PH value was 6 and time was 45minutes. The research result indicates that, under the same desizing condition, ultrasonication can improve the desizing percentage and whiteness of cotton fabric, but the fabric strength loss increases slightly. And for the same required desizing percentage, the ultrasonic enzyme desizing process saved time and reduced the temperature of experiments compared with traditional enzyme desizing process


2016 ◽  
Vol 87 (13) ◽  
pp. 1620-1630 ◽  
Author(s):  
Yangyi Chen ◽  
Jie An ◽  
Qi Zhong ◽  
Peter Müller-Buschbaum ◽  
Jiping Wang

The smart control of cotton fabric comfort by cross-linking thermo-responsive random copolymer is investigated. The monomers 2-(2-methoxyethoxy) ethoxyethyl methacrylate (MEO2MA) and ethylene glycol methacrylate (EGMA) with a molar ratio of 17:3 are selected to synthesize the thermo-responsive random copolymer poly(2-(2-methoxyethoxy) ethoxyethyl methacrylate- co-ethylene glycol methacrylate), abbreviated as P(MEO2MA- co-EGMA). By using citric acid as a cross-linking agent, the obtained P(MEO2MA- co-EGMA) is successfully immobilized onto cotton fabrics. Smart control is achieved from the thermo-responsive behavior of the copolymer. Cross-linked P(MEO2MA- co-EGMA) will collapse when the ambient temperature exceeds its transition temperature. Therefore, the formerly compact P(MEO2MA- co-EGMA) layer will switch to a porous structure, and the air/moisture permeability of the textiles is enhanced. As the comfort of the textiles is closely related to the air/moisture permeability, a smart control of the cotton fabric comfort can be realized. In addition, the softness of cotton fabrics with and without thermo-responsive polymers does not show a prominent change, even when the applied solution concentration is as high as 16% (wt%). On the contrary, the stiffness of the cotton fabric coated with poly( N-isopropylacrylamide) (PNIPAM) is significantly higher than the original cotton fabric, indicating that homo PNIPAM is less suitable for textiles used in daily lives. Moreover, the whiteness and mechanical properties are studied and stay unchanged after cross-linking. As a consequence, the introduction of P(MEO2MA- co-EGMA) into textiles can provide textiles with smart control of cotton comfort, and it will not influence the wearabilities of the textiles.


2011 ◽  
Vol 175-176 ◽  
pp. 214-219 ◽  
Author(s):  
Yun Hui Xu ◽  
Zhao Fang Du ◽  
Yu Yue Chen

For exploiting the novel multifunctional ecological cotton fibers, a new cotton fiber with the collagen protein cross-linking (CPCCF) was prepared by the limited selective oxidation of a cotton thread with sodium periodate solution and subsequent treatment with a solution of collagen protein at 40°C in aqueous acetic acid. FT-IR spectra of the CPCCF suggested that the imine covalent bond between the collagen protein and the oxidized cotton fiber was formed through a series of reaction. X-ray diffractograms analysis showed that the crystallinity of oxidized cotton fiber after collagen protein treatment increased slightly. Meanwhile, Scanning electron microscopy photographs illuminated that the modification with collagen protein occurred on the surface of cotton fiber. Kjeldahl nitrogen analysis of the CPCCF showed that the maximum percentage of collagen protein introduced into cotton fiber was 1.68% (w/w). However, the breaking strength of the cotton thread oxidized partially by sodium periodate at the concentration of less than 2.0 mg ml-1 did not decrease much. Furthermore, a model experiment for the controlled release drugs was performed using aloe anthraquinone, components of a Chinese medicine, suggested potential usefulness of the CPCCF as a carrier for the controlled release drugs.


2017 ◽  
Vol 12 (4) ◽  
pp. 155892501701200 ◽  
Author(s):  
Rong Zhou ◽  
Xueli Wang ◽  
Jianyong Yu ◽  
Zhenzhen Wei ◽  
Yu Gao

This paper reports a hollow copolyester fiber modified with polyethylene glycol and sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate, abbreviated as ECDP-H, which has the potential to be a replacement for cotton. The objective evaluation of luster (contrast glossiness) and Kawabata Evaluation System for Fabrics (KES-F) (four Primary Hand Parameters and the Total Hand) of ECDP-H, PET and cotton fabrics are studied in order to investigate the cotton-like appearance of the ECDP-H. The results of moisture regain and dynamic moisture absorption values obtained indicate that the hydrophilicity of the ECDP-H fabric is better than that of PET fabric. The thermo-physiological performance for three fabrics is determined using air and water vapor permeability, wicking, warm-cooling feeling, thermal resistance and vapor resistance. The results show that the ECDP-H fabric has better hand and comfort properties than cotton.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
Author(s):  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document