Cutting Edge Preparation of PCBN Inserts

2013 ◽  
Vol 797 ◽  
pp. 183-188
Author(s):  
Berend Denkena ◽  
Jens Köhler ◽  
C.E.H. Ventura

In order to increase tool life and workpiece surface quality, cutting processes with geometrically defined cutting edges demand inserts with a targeted prepared edge. For example, chamfers are largely used in many processes to provide edge strengthening without damaging the chip flow. In order to achieve a stable and reliable cutting process, small and uniform chamfers are necessary. In this context, the influence of grinding parameters on the edge quality and on the chamfer width deviations is investigated. It was found that larger abrasive grains increase edge chipping and that elastic deformation during chamfer grinding at insert corner radius is the main responsible for chamfer width deviation.

2015 ◽  
Vol 807 ◽  
pp. 153-161 ◽  
Author(s):  
Christian Bölling ◽  
Sebastian Güth ◽  
Eberhard Abele

In production processes uncertainty has a great impact on the product quality as well as production costs. In automotive industry the reaming of valve guides in a cylinder head of a combustion engine is a quality determining process. Due to the force fitting of the valve guides into the cylinder head the final reaming process has to deal with increased uncertainty. On the other hand, the finished hole is closely tolerated. To ensure the process reliability the admissible tolerance must be strictly met even in case of uncertainty. This paper presents a possibility to achieve process reliability by a modified process chain with an additional pilot reaming tool. Thereby, the effect of different cutting edge preparation is also analyzed. Further, the influence of the pilot reamer geometry on the final hole quality is investigated.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


Author(s):  
Lukas Seeholzer ◽  
Stefan Süssmaier ◽  
Fabian Kneubühler ◽  
Konrad Wegener

AbstractEspecially for slicing hard and brittle materials, wire sawing with electroplated diamond wires is widely used since it combines a high surface quality with a minimum kerf loss. Furthermore, it allows a high productivity by machining multiple workpieces simultaneously. During the machining operation, the wire/workpiece interaction and thus the material removal conditions with the resulting workpiece quality are determined by the material properties and the process and tool parameters. However, applied to machining of carbon fibre reinforced polymers (CFRP), the process complexity potentially increases due to the anisotropic material properties, the elastic spring back potential of the material, and the distinct mechanical wear due to the highly abrasive carbon fibres. Therefore, this experimental study analyses different combinations of influencing factors with respect to process forces, workpiece surface temperatures at the wire entrance, and the surface quality in wire sawing unidirectional CFRP material. As main influencing factors, the cutting and feed speeds, the density of diamond grains on the wire, the workpiece thickness, and the fibre orientation of the CFRP material are analysed and discussed. For the tested parameter settings, it is found that while the influence of the grain density is negligible, workpiece thickness, cutting and feed speeds affect the process substantially. In addition, higher process forces and workpiece surface temperatures do not necessarily deteriorate the surface quality.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Xuefeng Zhao ◽  
Hao Qin ◽  
Zhiguo Feng

Tool edge preparation can improve the tool life, as well as cutting performance and machined surface quality, meeting the requirements of high-speed and high-efficiency cutting. In general, prepared tool edges could be divided into symmetric or asymmetric edges. In the present study, the cemented carbide tools were initially edge prepared through drag finishing. The simulation model of the carbide cemented tool milling steel was established through Deform software. Effects of edge form factor, spindle speed, feed per tooth, axial, and radial cutting depth on the cutting force, the tool wear, the cutting temperature, and the surface quality were investigated through the orthogonal cutting simulation. The simulated cutting force results were compared to the results obtained from the orthogonal milling experiment through the dynamometer Kistler, which verified the simulation model correctness. The obtained results provided a basis for edge preparation effect along with high-speed and high effective cutting machining comprehension.


2021 ◽  
Vol 5 (3) ◽  
pp. 77
Author(s):  
Berend Denkena ◽  
Alexander Krödel-Worbes ◽  
Sascha Beblein ◽  
Markus Hein

One of the decisive factors for the performance of milling tools is the quality of the cutting edge. The latter results from the process control of the individual steps along the tool manufacturing process chain, which generally includes the sintering or pressing of the blanks, grinding, cutting edge preparation, and coating of the tools. However, the targeted and application-specific design of the process steps in terms of high economic efficiency is currently limited by a lack of knowledge regarding the influence of the corresponding process parameters on the resulting cutting edge quality. In addition, there is a lack of suitable parameters that adequately represent the characteristics of the cutting edge microtopography. This publication therefore investigates the influence of manufacturing processes on cutting edge quality and wear behavior of end mills. On this basis, different characterization parameters for the cutting edge quality are derived and evaluated with regard to their ability to predict the wear behavior.


1995 ◽  
Vol 117 (1) ◽  
pp. 55-61 ◽  
Author(s):  
C. Guo ◽  
S. Malkin

An analysis is presented for the fraction of the energy transported as heat to the workpiece during grinding. The abrasive grains and grinding fluid in the wheel pores are considered as a thermal composite which moves relative to the grinding zone at the wheel speed. The energy partition fraction to the workpiece is modeled by setting the temperature of the workpiece surface equal to that of the composite surface at every point along the grinding zone, which allows variation of the energy partition along the grinding zone. Analytical results indicate that the energy partition fraction to the workpiece is approximately constant along the grinding zone for regular down grinding, but varies greatly along the grinding zone for regular up grinding and both up and down creep-feed grinding. The resulting temperature distributions have important implications for selecting up versus down grinding especially for creep-feed operations.


Author(s):  
Andre D. L. Batako ◽  
Valery V. Kuzin ◽  
Brian Rowe

High Efficiency Deep Grinding (HEDG) has been known to secure high removal rates in grinding processes at high wheel speed, relatively large depth of cut and moderately high work speed. High removal rates in HEDG are associated with very efficient grinding and secure very low specific energy comparable to conventional cutting processes. Though there exist HEDG-enabled machine tools, the wide spread of HEDG has been very limited due to the requirement for the machine tool and process design to ensure workpiece surface integrity. HEDG is an aggressive machining process that requires an adequate selection of grinding parameters in order to be successful within a given machine tool and workpiece configuration. This paper presents progress made in the development of a specialised HEDG machine. Results of HEDG processes obtained from the designed machine tool are presented to illustrate achievable high specific removal rates. Specific grinding energies are shown alongside with measured contact arc temperatures. An enhanced single-pole thermocouple technique was used to measure the actual contact temperatures in deep cutting. The performance of conventional wheels is depicted together with the performance of a CBN wheel obtained from actual industrial tests.


Sign in / Sign up

Export Citation Format

Share Document